Abstract

We have proposed a new design for temperature-independent silicon optical filters utilizing a combination of wide and narrow waveguides. The waveguide structure was optimized to minimize the spectral shift of the filter owing to the environmental temperature change. Based on this new waveguide design, we fabricated Mach–Zehnder interferometer optical filters on silicon-on-insulator substrates. The measured spectrum showed substantially small temperature dependence being in good agreement with the theoretical estimation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, J. Lightwave Technol. 23, 4222 (2005).
    [CrossRef]
  2. T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
    [CrossRef]
  3. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, Opt. Express 14, 664 (2006).
    [CrossRef] [PubMed]
  4. W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
    [CrossRef]
  5. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
    [CrossRef]
  6. G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
    [CrossRef]
  7. R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
    [CrossRef]
  8. T. Saito, in Optical Fiber Communication Conference (2003), paper MF47.
  9. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2001).
  10. L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
    [CrossRef] [PubMed]
  11. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
    [CrossRef]

2008 (2)

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

2007 (1)

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (2)

T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
[CrossRef] [PubMed]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

1984 (1)

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
[CrossRef]

Baets, R.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, Opt. Express 14, 664 (2006).
[CrossRef] [PubMed]

Beckx, S.

Bogaerts, W.

Chin, M. K.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Darmawan, S.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

Dekker, R.

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Driessen, A.

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Dumon, P.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, Opt. Express 14, 664 (2006).
[CrossRef] [PubMed]

Frst, M.

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
[CrossRef]

Jaenen, P.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Landobasa, Y. M.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

Lipson, M.

Lou, J.

Mazur, E.

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
[CrossRef]

Okada, Y.

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2001).

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Saito, T.

T. Saito, in Optical Fiber Communication Conference (2003), paper MF47.

Taillaert, D.

Tokumaru, Y.

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Tong, L.

Usechak, N.

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Van Thourhout, D.

Wouters, J.

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, IEEE Photon. Technol. Lett. 20, 9 (2008).
[CrossRef]

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D (1)

R. Dekker, N. Usechak, M. Frst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys., Part 2 43, L673 (2004).
[CrossRef]

Opt. Express (2)

Other (2)

T. Saito, in Optical Fiber Communication Conference (2003), paper MF47.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the TI-MZI.

Fig. 2
Fig. 2

Temperature dependence of effective index for the fundamental TE-like mode of the Si waveguide.

Fig. 3
Fig. 3

Cross-sectional SEM images of the narrow and wide waveguides.

Fig. 4
Fig. 4

Measured spectra of four test devices for three different temperatures. The symbols represent the experimental values, and the dashed curves show the theoretical ones.

Fig. 5
Fig. 5

(a) Measured and theoretical temperature effect and (b) measured and calculated modified interference order M. (X, temperature-independent point.)

Fig. 6
Fig. 6

Calculated spectrum shifts owing to the nonlinearity of the wavelength dispersion in effective index as a function of the wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m λ = n eff ( W 0 ) Δ L + Δ n eff L ,
M = m Δ L n eff ( W 0 ) λ L Δ n eff λ .
λ T = Δ L M n eff ( W 0 ) T + L M Δ n eff T .

Metrics