Abstract

We demonstrate that Raman-effect-assisted transformations of ultrashort pulses in materials with inhomogeneously distributed multiple vibrational modes can be tailored by optimally ordered pulse sequences and appropriate optical sampling. This suggests attractive strategies for a synthesis of few-cycle pulses, enhanced spectral transformation of light fields, and pulse shaping in silica fibers and other materials with multiple Raman modes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).
  2. A. M. Zheltikov, in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P. R. Griffiths, eds. (Wiley, 2001), Vol. 1, p. 572.
  3. C. L. Evans and X. Sunney Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
    [CrossRef]
  4. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  6. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Lett. 31, 2323 (2006).
    [CrossRef] [PubMed]
  7. N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).
    [CrossRef] [PubMed]
  8. V. P. Kalosha and J. Herrmann, Phys. Rev. A 68, 023812 (2003).
    [CrossRef]
  9. A. M. Zheltikov, Phys. Usp. 45, 687 (2002).
    [CrossRef]
  10. Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
    [CrossRef]
  11. G. E. Walrafen and P. N. Krishnan, Appl. Opt. 21, 359 (1982).
    [CrossRef] [PubMed]
  12. D. Hollenbeck and C. D. Cantrell, J. Opt. Soc. Am. B 19, 2886 (2002).
    [CrossRef]
  13. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]

2008 (1)

C. L. Evans and X. Sunney Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

2006 (1)

2003 (1)

V. P. Kalosha and J. Herrmann, Phys. Rev. A 68, 023812 (2003).
[CrossRef]

2002 (4)

A. M. Zheltikov, Phys. Usp. 45, 687 (2002).
[CrossRef]

N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

D. Hollenbeck and C. D. Cantrell, J. Opt. Soc. Am. B 19, 2886 (2002).
[CrossRef]

1989 (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

1985 (1)

Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

1982 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Cantrell, C. D.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Eesley, G. L.

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).

Evans, C. L.

C. L. Evans and X. Sunney Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Gamble, E. B.

Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Griffiths, P. R.

A. M. Zheltikov, in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P. R. Griffiths, eds. (Wiley, 2001), Vol. 1, p. 572.

Herrmann, J.

V. P. Kalosha and J. Herrmann, Phys. Rev. A 68, 023812 (2003).
[CrossRef]

Hollenbeck, D.

Kalosha, V. P.

V. P. Kalosha and J. Herrmann, Phys. Rev. A 68, 023812 (2003).
[CrossRef]

Korn, G.

N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

Krishnan, P. N.

Nelson, K. A.

Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Serebryannikov, E. E.

Sidorov-Biryukov, D. A.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Sunney Xie, X.

C. L. Evans and X. Sunney Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Walrafen, G. E.

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Yan, Y.-X.

Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Zhavoronkov, N.

N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

Zheltikov, A. M.

D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Lett. 31, 2323 (2006).
[CrossRef] [PubMed]

A. M. Zheltikov, Phys. Usp. 45, 687 (2002).
[CrossRef]

A. M. Zheltikov, in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P. R. Griffiths, eds. (Wiley, 2001), Vol. 1, p. 572.

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. Sunney Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

J. Chem. Phys. (1)

Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

V. P. Kalosha and J. Herrmann, Phys. Rev. A 68, 023812 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. M. Zheltikov, Phys. Usp. 45, 687 (2002).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).

A. M. Zheltikov, in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P. R. Griffiths, eds. (Wiley, 2001), Vol. 1, p. 572.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The Raman response function of fused silica calculated using a single-damped-oscillator model (dashed curve) [Eq. (1)] with θ 1 = 32 fs and θ 2 = 12.2 fs and the HC model (solid line), as defined by Eq. (2). The inset displays the Raman gain spectra for the single-damped-oscillator model (dashed curve) and the HC model (solid curve).

Fig. 2
Fig. 2

The Ψ R ( t ) function of a Raman-active medium excited by a single ultrashort light pulse (dashed curve) and a sequence of ultrashort light pulses (solid curve) in a medium with an HC-model multiple-vibration-mode Raman response as defined by Eq. (2) with M = 3 , Δ = 54.6 fs . The zero time for the Ψ R ( t ) function in the case of single-pulse pump is shifted by 3 Δ . The envelope of the probe pulse with τ 0 = 100 fs and τ d = 450 fs is shown by the dotted curve. The dashed–dotted curve in presents a purely harmonic function Ψ 0 ( t ) corresponding to the Raman effect in a material with a harmonic Raman response function h 0 ( θ ) sin ( ω 7 θ ) driven by a single infinitely short light pulse.

Fig. 3
Fig. 3

The spectrum of the probe pulse modulated by HC-model multiple Raman vibration modes driven by a single ultrashort light pulse (dashed curve) and a sequence of four ( M = 3 ) ultrashort light pulses with Δ = 54.6 fs (solid curve). The dashed–dotted curve shows the spectrum of a modulated probe pulse in the case of a purely harmonic Raman response h 0 ( θ ) sin ( ω 7 θ ) .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

h v ( θ ) = θ 1 2 + θ 2 2 θ 1 2 θ 2 exp ( θ θ 1 ) sin ( θ θ 2 ) ,
h R ( θ ) = j = 1 N A j Θ ( θ ) exp ( γ j θ ) exp ( Γ j 2 θ 2 4 ) sin ( ω j θ ) ,
E ( t ) = m = 0 M E 0 δ ( t m Δ ) .
A ( z , σ ) = A ( 0 , σ ) exp [ i Φ ( z , σ ) ] ,

Metrics