Abstract

A remarkable recent progress in two-photon photopolymerization is the achievement of fabrication resolution around tens of nanometers, establishing a femtosecond laser as a nanofabrication tool. However, how the superresolution has been made possible is still under arguement. We propose a concept of polymer network permeability to solvents, meaning a structure-loosened nanopolymer state that allows free penetration of small molecules to interpret the mechanism. Experimentally, we found proof showing existence of the state, including an unusually large volume shrinkage rate (>60%), shape-memory effect, a giant softness of nanospring, and the mechanical stability of rinsed two-photon written polymer nanowires.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription