Abstract

A passively stabilized third-order optical interferometer that spatially separates the local oscillator and signal generation is demonstrated with long-term phase stability. The lack of spatial overlap eliminates unwanted contamination of either field. Fully independent optical control over both fields is exerted after the sample. This independence is taken advantage of with what we believe to be a new approach to scanning the relative phase between the local oscillator and signal that has very high precision and reproducibility. The independence of the fields is also exploited in a flexible balanced heterodyne detection scheme.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization Sagnac interferometer with a common-path local oscillator for heterodyne detection

Peter T. Beyersdorf, Martin M. Fejer, and Robert L. Byer
J. Opt. Soc. Am. B 16(9) 1354-1358 (1999)

Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

Chris T. Middleton, David B. Strasfeld, and Martin T. Zanni
Opt. Express 17(17) 14526-14533 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription