Abstract

Third-harmonic generation (THG) has been investigated in the monoclinic BiB3O6. The symmetry and birefringence analysis revealed that there are phase-matching conditions for the direct third-order nonlinear process, where the cascading second-order processes are precluded by the zero effective nonlinearity. The first phase-matched pure χ(3) THG in a noncentrosymmetric crystal is presented together with the improved Sellmeier and thermo-optic dispersion formulas.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-Zadeh, IEEE J. Sel. Top. Quantum Electron. 13, 679 (2007).
    [Crossref]
  2. H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
    [Crossref]
  3. A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
    [Crossref]
  4. J. E. Midwinter and J. Warner, Br. J. Appl. Phys. 16, 1667 (1965).
    [Crossref]
  5. S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
    [Crossref]
  6. N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
    [Crossref]
  7. P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
    [Crossref]
  8. P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
    [Crossref]
  9. Y. Takagi and S. Muraki, J. Lumin. 87-89, 865 (2000).
    [Crossref]
  10. X. Mu, X. Gu, M. V. Makarov, Y. J. Ding, J. Wang, J. Wei, and Y. Liu, Opt. Lett. 25, 117 (2000).
    [Crossref]
  11. J. P. Feve, B. Boulanger, and Y. Guillien, Opt. Lett. 25, 1373 (2000).
    [Crossref]
  12. J. Douady and B. Boulanger, Opt. Lett. 29, 2794 (2004).
    [Crossref] [PubMed]
  13. J. Douady and B. Boulanger, J. Opt. A. 7, 467 (2005).
    [Crossref]
  14. J. P. Feve and B. Boulanger, Phys. Rev. A 65, 063814 (2002).
    [Crossref]
  15. F. Gravier and B. Boulanger, Opt. Express 14, 11715 (2006).
    [Crossref] [PubMed]
  16. N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).
  17. R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
    [Crossref]
  18. A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
    [Crossref]
  19. T. Hashimoto and T. Yoko, Appl. Phys. Lett. 68, 2478 (1996).
    [Crossref]
  20. H. Okamoto and M. Tasumi, Opt. Commun. 121, 63 (1995).
    [Crossref]
  21. H. K. Nienhuys, P. C. M. Planken, R. A. V. Santen, and H. J. Bakker, Opt. Lett. 26, 1350 (2001).
    [Crossref]
  22. T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
    [Crossref]

2008 (1)

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

2007 (2)

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
[Crossref]

M. Ebrahim-Zadeh, IEEE J. Sel. Top. Quantum Electron. 13, 679 (2007).
[Crossref]

2006 (1)

2005 (1)

J. Douady and B. Boulanger, J. Opt. A. 7, 467 (2005).
[Crossref]

2004 (1)

2002 (2)

J. P. Feve and B. Boulanger, Phys. Rev. A 65, 063814 (2002).
[Crossref]

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

2001 (1)

2000 (4)

1999 (1)

1998 (1)

T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
[Crossref]

1996 (1)

T. Hashimoto and T. Yoko, Appl. Phys. Lett. 68, 2478 (1996).
[Crossref]

1995 (1)

H. Okamoto and M. Tasumi, Opt. Commun. 121, 63 (1995).
[Crossref]

1988 (2)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[Crossref]

A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
[Crossref]

1965 (1)

J. E. Midwinter and J. Warner, Br. J. Appl. Phys. 16, 1667 (1965).
[Crossref]

1963 (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
[Crossref]

Bakker, H. J.

Banerjee, S.

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Banks, P. S.

Becker, P.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Bohaty, L.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Boulanger, B.

Ding, Y. J.

Douady, J.

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh, IEEE J. Sel. Top. Quantum Electron. 13, 679 (2007).
[Crossref]

Eichler, H. J.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Feit, M. D.

Felbinger, T.

T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
[Crossref]

Feve, J. P.

J. P. Feve and B. Boulanger, Phys. Rev. A 65, 063814 (2002).
[Crossref]

J. P. Feve, B. Boulanger, and Y. Guillien, Opt. Lett. 25, 1373 (2000).
[Crossref]

Gad, G. M. A.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Gravier, F.

Gu, X.

Guillien, Y.

Hanuza, J.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Hashimoto, T.

T. Hashimoto and T. Yoko, Appl. Phys. Lett. 68, 2478 (1996).
[Crossref]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Kato, K.

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
[Crossref]

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Liu, Y.

Maczka, M.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Makarov, M. V.

Maker, P. D.

R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
[Crossref]

Midwinter, J. E.

J. E. Midwinter and J. Warner, Br. J. Appl. Phys. 16, 1667 (1965).
[Crossref]

Miller, S.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Miyata, K.

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
[Crossref]

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Mlynek, J.

T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
[Crossref]

Mu, X.

Muraki, S.

Y. Takagi and S. Muraki, J. Lumin. 87-89, 865 (2000).
[Crossref]

Nienhuys, H. K.

Noack, F.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Okamoto, H.

H. Okamoto and M. Tasumi, Opt. Commun. 121, 63 (1995).
[Crossref]

Ossig, F.

A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
[Crossref]

Panyutin, V.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Penzkofer, A.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[Crossref]

A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
[Crossref]

Perry, M. D.

Petrov, V.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Planken, P. C. M.

Qiu, P.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[Crossref]

A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
[Crossref]

Rotermund, F.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Santen, R. A. V.

Savage, C. M.

R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
[Crossref]

Schiller, S.

T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
[Crossref]

Takagi, Y.

Y. Takagi and S. Muraki, J. Lumin. 87-89, 865 (2000).
[Crossref]

Takaichi, K.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Tanno, F.

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Tasumi, M.

H. Okamoto and M. Tasumi, Opt. Commun. 121, 63 (1995).
[Crossref]

Terhune, R. W.

R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
[Crossref]

Ueda, K.

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Umemura, N.

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
[Crossref]

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Wang, J.

Warner, J.

J. E. Midwinter and J. Warner, Br. J. Appl. Phys. 16, 1667 (1965).
[Crossref]

Wei, J.

Xu, G.

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

Yoko, T.

T. Hashimoto and T. Yoko, Appl. Phys. Lett. 68, 2478 (1996).
[Crossref]

Appl. Phys. B (2)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[Crossref]

A. Penzkofer, F. Ossig, and P. Qiu, Appl. Phys. B 47, 71 (1988).
[Crossref]

Appl. Phys. Lett. (2)

T. Hashimoto and T. Yoko, Appl. Phys. Lett. 68, 2478 (1996).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
[Crossref]

Br. J. Appl. Phys. (1)

J. E. Midwinter and J. Warner, Br. J. Appl. Phys. 16, 1667 (1965).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ebrahim-Zadeh, IEEE J. Sel. Top. Quantum Electron. 13, 679 (2007).
[Crossref]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

J. Lumin. (1)

Y. Takagi and S. Muraki, J. Lumin. 87-89, 865 (2000).
[Crossref]

J. Opt. A. (1)

J. Douady and B. Boulanger, J. Opt. A. 7, 467 (2005).
[Crossref]

Opt. Commun. (2)

H. Okamoto and M. Tasumi, Opt. Commun. 121, 63 (1995).
[Crossref]

A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, and G. M. A. Gad, Opt. Commun. 206, 179 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (2)

S. Miller, F. Rotermund, G. Xu, F. Noack, V. Panyutin, and V. Petrov, Opt. Mater. 30, 1469 (2008).
[Crossref]

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007). The updated dispersion equation for the thermal rotation rate of the principal optical axes (y,z) about x(=b) is given by dαint/dT=+/-(0.0119/λ+0.0308) mrad/°C, where λ is in micrometers (0.5321 μm⩽λ⩽1.6201 μm) and the plus and minus signs are applied to ϕ=+90° and −90° directions, respectively.
[Crossref]

Phys. Rev. A (1)

J. P. Feve and B. Boulanger, Phys. Rev. A 65, 063814 (2002).
[Crossref]

Phys. Rev. Lett. (1)

T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).
[Crossref]

Other (1)

N. Umemura, S. Banerjee, K. Miyata, F. Tanno, and K. Kato, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper JTuC18. Our previously measured thermo-optic constants are corrected by taking into account the thermal expansion coefficients presented in Cryst. Res. Technol. 36, 1175 (2001) and J. Appl. Phys. 91, 3618 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase-matching curves for direct type 1 THG in the x z plane ( ϕ = 0 ° ) of BIBO at 20 ± 1 ° C . The dashed curve (H) is calculated with the index formula of Hellwig et al. [2]. The solid curve (M) is calculated with Eq. (1). The circles are our experimental points.

Fig. 2
Fig. 2

Phase-matching curves for direct type 2 THG in the x z plane of BIBO at 20 ± 1 ° C . The dashed curve (H) is calculated with the index formula of Hellwig et al. [2]. The solid curve (M) is calculated with Eq. (1). The circles are our experimental points.

Fig. 3
Fig. 3

Temperature-tuned phase-matching curves for (a) direct type 1 THG and (b) direct type 2 THG along x of BIBO. The solid curve are calculated with Eqs. (1, 2). The circles are our experimental points.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n x 2 = 3.0759 + 0.03169 λ 2 0.03323 0.01402 λ 2 ,
n y 2 = 3.1698 + 0.03666 λ 2 0.03599 0.01819 λ 2 ,
n z 2 = 3.6546 + 0.05116 λ 2 0.03713 0.02299 λ 2
( 0.3263 μ m λ 3.083 μ m ) ,
d n x d T = ( 0.1178 λ 3 0.2282 λ 2 + 0.7965 λ 0.2962 ) × 10 5 ,
d n y d T = ( 0.1777 λ 3 0.5594 λ 2 + 0.8336 λ 0.9960 ) × 10 5 ,
d n z d T = ( 0.2075 λ 3 0.7026 λ 2 + 0.8378 λ 1.0210 ) × 10 5 ( ° C 1 ) ,
( 0.3263 μ m λ 3.083 μ m ) ,

Metrics