Abstract

We study the nonlinear polarization rotation induced by a pump pulse on a probe beam through cross-phase modulation inside a silicon waveguide and show that this phenomenon can be used to realize a fast Kerr shutter in spite of the free-carrier effects and walk-off. We show that free carriers generated by the pump pulse through two-photon absorption affect the switching process considerably, especially with the interaction of walk-off effects. However, numerical simulations reveal that their impact is not detrimental for short pump pulses. In this case, an approximate analytical solution predicts the shape and duration of the switching window with reasonable accuracy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
    [CrossRef] [PubMed]
  2. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
    [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, Opt. Lett. 29, 2867 (2004).
    [CrossRef]
  4. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, Opt. Lett. 30, 2254 (2005).
    [CrossRef] [PubMed]
  5. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, Opt. Express 13, 7298 (2005).
    [CrossRef] [PubMed]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  7. L. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).
    [CrossRef] [PubMed]
  8. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
    [CrossRef]
  9. H. Rong, Y. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, Opt. Express 14, 6705 (2006).
    [CrossRef] [PubMed]
  10. Y. Liu and H. K. Tsang, Appl. Phys. Lett. 90, 211105 (2007).
    [CrossRef]

2007 (4)

Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
[CrossRef] [PubMed]

L. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Y. Liu and H. K. Tsang, Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (2)

Agrawal, G. P.

Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
[CrossRef] [PubMed]

L. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Almeida, V. R.

Baets, R.

Barrios, C. A.

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Boyraz, Ö.

Cohen, O.

Dumon, P.

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Hodson, T.

Jalali, B.

Jones, R.

Kawanishi, T.

Koonath, P.

Kuo, Y.

Liang, T.

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

Liu, Y.

Y. Liu and H. K. Tsang, Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

Ndi, F. C.

Nunes, L.

Ouzounov, D. G.

Painter, O. J.

Panepucci, R. R.

Paniccia, M.

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Prather, D. W.

Priem, G.

Raday, O.

Raghunathan, V.

Rong, H.

Sakamoto, T.

Sasagawa, K.

Toulouse, J.

Tsang, H.

Tsang, H. K.

Y. Liu and H. K. Tsang, Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

Tsuchiya, M.

Van Thourhout, D.

Xu, S.

Yin, L.

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic setup of the proposed optical Kerr shutter; waveguide geometry is shown on the top.

Fig. 2
Fig. 2

Switching windows for four different pump-pulse widths. The thinner (red) curves mark the numerical results, while the thicker (blue) curves show the analytical prediction neglecting the free-carrier effects.

Fig. 3
Fig. 3

Switching windows for the same four pump-pulse widths and the same operating conditions used in Fig 2. The only difference is that a square-shape silicon waveguide is employed to minimize walk-off effects.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E x z + d x E x T = 2 i k 0 n 2 a ( 1 + i r ) I p E x σ 2 ( 1 + i μ ) N c E x α l E x / 2 + i ( β x β ¯ ) E x ,
E y z + d y E y T = 2 i k 0 n 2 b ( 1 + i r ) I p E y σ 2 ( 1 + i μ ) N c E y α l E y / 2 + i ( β y β ¯ ) E y ,
I p z = β TPA I p 2 σ N c I p α l I p ,
N c T = β TPA 2 h ν p I p 2 ( z , T ) N c τ c ,
I p ( z , T ) = α l I 0 ( T ) e α l z α l + β TPA I 0 ( T ) ( 1 e α l z ) ,
A x z = 2 k 0 n 2 a r I p A x , ϕ x z = 2 k 0 n 2 a I p .
A x ( z , T x ) = A x ( 0 , T x ) exp [ a 0 z α l e α l z β TPA I p ( 0 , T x + d x z ) α l + β TPA I p ( 0 , T x + d x z ) ( 1 e α l z ) d z ] ,
ϕ x ( z , T x ) = a r 0 z α l e α l z β TPA I p ( 0 , T x + d x z ) α l + β TPA I p ( 0 , T x + d x z ) ( 1 e α l z ) d z .

Metrics