Abstract

Theoretical and experimental study of channel crosstalk effects in time-switched phase-diversity optical homodyne reception is presented, focused toward ultradense WDM passive optical networks. This receiver achieves ultralow channel spacing of 3GHz per 1dB power penalty at 1Gbits and feasible implementation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, J. Lightwave Technol. 24, 4568 (2006).
    [CrossRef]
  2. S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.
  3. C. Bock, J. M. Fabrega, and J. Prat, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper We3.P.168.
  4. J. M. Fabrega and J. Prat, Opt. Lett. 32, 463 (2007).
    [CrossRef] [PubMed]
  5. J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.
  6. G. Jacobsen and I. Garret, J. Lightwave Technol. 9, 1168 (1991).
    [CrossRef]
  7. K.-P. Ho, Phase-Modulated Optical Communication Systems. (Springer-Verlag, 2005).

2007

2006

1991

G. Jacobsen and I. Garret, J. Lightwave Technol. 9, 1168 (1991).
[CrossRef]

Bock, C.

C. Bock, J. M. Fabrega, and J. Prat, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper We3.P.168.

Bowers, J. E.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Coldren, L. A.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

DenBaars, S. P.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Fabrega, J. M.

J. M. Fabrega and J. Prat, Opt. Lett. 32, 463 (2007).
[CrossRef] [PubMed]

C. Bock, J. M. Fabrega, and J. Prat, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper We3.P.168.

Garret, I.

G. Jacobsen and I. Garret, J. Lightwave Technol. 9, 1168 (1991).
[CrossRef]

Ho, K.-P.

K.-P. Ho, Phase-Modulated Optical Communication Systems. (Springer-Verlag, 2005).

Imai, T.

S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.

Jacobsen, G.

G. Jacobsen and I. Garret, J. Lightwave Technol. 9, 1168 (1991).
[CrossRef]

Johansson, L. A.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Kim, B. Y.

Klamkin, J.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Kumozaki, K.

S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.

Lee, C.-H.

Narikawa, S.

S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.

Prat, J.

J. M. Fabrega and J. Prat, Opt. Lett. 32, 463 (2007).
[CrossRef] [PubMed]

C. Bock, J. M. Fabrega, and J. Prat, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper We3.P.168.

Ramaswamy, A.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Sakurai, N.

S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.

Sorin, W. V.

J. Lightwave Technol.

Opt. Lett.

Other

K.-P. Ho, Phase-Modulated Optical Communication Systems. (Springer-Verlag, 2005).

S. Narikawa, N. Sakurai, K. Kumozaki, and T. Imai, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper Tu.3.5.7.

C. Bock, J. M. Fabrega, and J. Prat, in Proceedings of the 32nd European Conference on Optical Communication (2006), paper We3.P.168.

J. Klamkin, L. A. Johansson, A. Ramaswamy, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, in 20th Annual Meeting of the Lasers and Electro-Optics Society (2007), pp. 40-41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Time-switched phase-diversity BPSK receiver.

Fig. 2
Fig. 2

g 1 ( t ) and g 2 ( t ) pulse shapes and autocorrelation of g 2 ( t ) , R 2 ( τ ) .

Fig. 3
Fig. 3

Spectrum after photodetection: (a) ideal homodyne reception and (b) using time-switched phase diversity.

Fig. 4
Fig. 4

Complex representation of signal samples including interference.

Fig. 5
Fig. 5

Sensitivity penalty owing to channel crosstalk. Squares are experimental data.

Fig. 6
Fig. 6

Experimental setup.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

penalty ( d B ) = 10 log ( 1 Q SIR ) ,
e S ( t ) = i = N N P Si exp [ j ( ω 0 t + 2 π i Dt + φ Si ( t ) ) ] ,
e LO ( t ) = P LO exp [ j ( ω 0 t + φ LO ( t ) ) ] ,
φ Si ( t ) = { 0 d = 1 π d = 1 } , φ LO ( t ) = π 2 p ( t ) ,
I P ( t ) = i = N N 2 R P LO P Si cos ( φ Si ( t ) + 2 π i D t π 2 p ( t ) ) ,
I P ( t ) = i = N N 2 R P LO P Si cos [ g 1 ( t ) φ Si ( t ) ] cos ( 2 π i D t ) ,
t [ 0 , T ] , g 1 ( t ) = { 1 0 t T 2 1 2 T 2 < t T } , g 1 ( t + T ) = g 1 ( t ) ,
I P ( t ) = i = N N 2 R P LO P Si g 2 ( t ) d cos ( 2 π i D t ) ,
t [ 0 , T ] , g 2 ( t ) = { 1 0 t T 2 0 T 2 < t T , } , g 2 ( t + T ) = g 2 ( t ) .
G P ( f ) = i = N N 4 R 2 P LO P S 0 T 4 [ sinc 2 ( π T ( f i D ) 2 ) ] .
SIR + H ( f ) 2 T 4 [ sinc 2 ( π T f 2 ) ] d f + H ( f ) 2 T 4 [ sinc 2 ( π T ( f D ) 2 ) ] d f ,
θ ( t ) = φ S 1 ( t ) + 2 π D t + π 2 p ( t ) ,
C d ( 1 + 1 SIR cos ( θ ̂ ) ) ,
BER = 1 4 π π + π exp ( Q 2 ( 1 + 1 SIR cos ( θ ̂ ) ) ) d θ ̂ ,

Metrics