Abstract

We demonstrate a novel technique for locking and tuning of a near-degenerate nanosecond optical parametric oscillator (OPO) using a transversely chirped volume Bragg grating. When the grating was translated, the OPO signal wavelength could be tuned from 1011to1023nm (3.5THz). The OPO was based on a periodically poled KTiOPO4 as a nonlinear crystal and was pumped at 532nm with up to 1.9mJ of energy. The generated signal at an energy of 0.37mJ had a bandwidth of 0.50nm and a suppression of broadband background of >30dB. The demonstrated technique is widely applicable for the construction of narrowband tunable sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
    [CrossRef] [PubMed]
  2. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 31, 1878 (2006).
    [CrossRef] [PubMed]
  3. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 32, 2996 (2007).
    [CrossRef] [PubMed]
  4. B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, Opt. Lett. 32, 3278 (2007).
    [CrossRef] [PubMed]
  5. P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
    [CrossRef]
  6. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  7. O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, Proc. SPIE 3578, 564 (1999).
    [CrossRef]
  8. A. Matsuda and S. Iizima, Appl. Phys. Lett. 31, 104 (1977).
    [CrossRef]
  9. E. L. Portnoi, Czech. J. Phys. Sect. B 34, 469 (1984).
    [CrossRef]
  10. K. Liao, M. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas, Opt. Express 15, 4876 (2007).
    [CrossRef] [PubMed]
  11. V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
    [CrossRef]
  12. A. Varanavicius, A. Dubietis, A. Berzanskis, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1603 (1997).
    [CrossRef]

2008

P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
[CrossRef]

2007

2006

2005

2003

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

1999

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, Proc. SPIE 3578, 564 (1999).
[CrossRef]

O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, Appl. Opt. 38, 619 (1999).
[CrossRef]

1997

1984

E. L. Portnoi, Czech. J. Phys. Sect. B 34, 469 (1984).
[CrossRef]

1977

A. Matsuda and S. Iizima, Appl. Phys. Lett. 31, 104 (1977).
[CrossRef]

Berzanskis, A.

Blau, P.

P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
[CrossRef]

Butkus, R.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Canalias, C.

Cheng, M.

Danielius, R.

Dubietis, A.

Efimov, O.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, Proc. SPIE 3578, 564 (1999).
[CrossRef]

Fastig, S.

P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
[CrossRef]

Flecher, E.

Fragemann, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Fujii, M.

Galvanauskas, A.

Glebov, L.

Glebov, L. B.

Glebova, L.

Henriksson, M.

Iizima, S.

A. Matsuda and S. Iizima, Appl. Phys. Lett. 31, 104 (1977).
[CrossRef]

Ishizuki, H.

Jacobsson, B.

Laurell, F.

Lavi, R.

P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
[CrossRef]

Liao, K.

Matsuda, A.

A. Matsuda and S. Iizima, Appl. Phys. Lett. 31, 104 (1977).
[CrossRef]

Papernov, S.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, Proc. SPIE 3578, 564 (1999).
[CrossRef]

Pasiskevicius, V.

Pearl, S.

P. Blau, S. Pearl, S. Fastig, and R. Lavi, IEEE J. Quantum Electron. 44, 867 (2008).
[CrossRef]

Piskarskas, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

A. Varanavicius, A. Dubietis, A. Berzanskis, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1603 (1997).
[CrossRef]

Portnoi, E. L.

E. L. Portnoi, Czech. J. Phys. Sect. B 34, 469 (1984).
[CrossRef]

Richardson, K.

Saikawa, J.

Schmid, A. W.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, Proc. SPIE 3578, 564 (1999).
[CrossRef]

Smilgevicius, V.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Smirnov, V.

Smirnov, V. I.

Taira, T.

Tiihonen, M.

Varanavicius, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

OPO setup.

Fig. 2
Fig. 2

Tuning of the OPO signal wavelength with grating position, experimental points, and linear fit.

Fig. 3
Fig. 3

Bragg OPO logarithmic spectrum for grating 2 and comparison with OPO gain. The inset shows the signal spectrum in linear scale.

Fig. 4
Fig. 4

Energy properties of the OPO with grating 2 at 1017.6 nm .

Metrics