Abstract

A new bottom-up approach for fabricating the optical metamaterial is reported. An array of metal nanoparticle clusters can provide both electric and magnetic activity in the optical frequency region through the excitation of the collective plasmon resonance. A two-dimensional square array of gold nanoparticle clusters (nanoclusters) was fabricated by using the template-directed colloidal self-assembly. The optical measurements showed strong extinction peaks in the near-infrared region owing to the electric resonance supported by the nanoclusters. The peak positions were in excellent agreement with the numerical simulations. The metal nanocluster metamaterial represents a promising new architecture for an optical metamaterial that can be fabricated by a scalable bottom-up fabrication technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
    [CrossRef] [PubMed]
  3. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).
    [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
    [CrossRef] [PubMed]
  7. W. Park and Q. Wu, Solid State Commun. 146, 221 (2008).
    [CrossRef]
  8. Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008).
    [CrossRef]
  9. C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
    [CrossRef] [PubMed]
  10. Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
    [CrossRef]
  11. J. Turkevich, Gold Bull. 18, 86 (1985).
    [CrossRef]
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  13. G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
    [CrossRef]
  14. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  15. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
    [CrossRef] [PubMed]

2008 (2)

W. Park and Q. Wu, Solid State Commun. 146, 221 (2008).
[CrossRef]

Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

2007 (1)

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

2003 (1)

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1985 (1)

J. Turkevich, Gold Bull. 18, 86 (1985).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Brand, S.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Cai, W.

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Cross, G. H.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Cummer, S. A.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

Dolling, G.

Drachev, V. P.

Engheta, N.

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Enkrich, C.

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Freeman, N. J.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Justice, B. J.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

Kildishev, A. V.

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Linden, S.

Lu, J. R.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Lu, Y.

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

McLellan, J.

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

Mock, J. J.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

Park, W.

W. Park and Q. Wu, Solid State Commun. 146, 221 (2008).
[CrossRef]

Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Peel, L. L.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Pendry, J. B.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Reeves, A.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Schuring, D.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Silveirinha, M.

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Smith, D. R.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Starr, A. F.

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Swann, M. J.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Turkevich, J.

J. Turkevich, Gold Bull. 18, 86 (1985).
[CrossRef]

Wegener, M.

Wu, Q.

W. Park and Q. Wu, Solid State Commun. 146, 221 (2008).
[CrossRef]

Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Xia, Y.

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

Yin, Y.

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

Yuan, H.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Gold Bull. (1)

J. Turkevich, Gold Bull. 18, 86 (1985).
[CrossRef]

J. Phys. D (1)

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

W. Park and Q. Wu, Solid State Commun. 146, 221 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the gold nanocluster array. The sphere represents metallic nanoparticle, d is the diameter of the cluster, p is the periodicity of the clusters, and h is the height of the cluster.

Fig. 2
Fig. 2

Electron micrograph of (a) patterned template with the size parameters [d ( hole diameter ) = 420 nm , p ( periodicity ) = 620 nm ], and the gold nanocluster array samples with the size parameters of (b) d = 420 nm , p = 620 nm , (c) d = 415 nm , p = 835 nm , and (d) d = 310 nm , p = 650 nm . The inset in (c) shows a high magnification image of a single gold nanocluster. The thicknesses of all samples were the same ( 300 nm ) .

Fig. 3
Fig. 3

Measured extinction spectra of the gold nanocluster arrays. The blue solid curve is for a 390 nm cluster diameter sample, the green dashed curve for a 420 nm cluster diameter sample, and the red dotted curve for a 450 nm cluster diameter sample.

Fig. 4
Fig. 4

Simulation results for the extinction spectra of the gold nanocluster array. The blue square curve represents a 390 nm diameter gold cluster array, the green circle curve for a 420 nm diameter gold cluster, and the red triangle curve for a 450 nm diameter gold cluster array. The simulation geometry is shown in (a), and the electric field pattern inside the cluster at 1.08 μ m is presented in (b) when d = 420 nm and h = 300 nm .

Metrics