Abstract

Monochromatic light, which is polarized in an arbitrary state, is totally internally reflected at angle of incidence ϕ=45° without change of polarization by a right-angle prism of refractive index n0=1+12=1.70711 (e.g., N-LAK8 Schott glass at wavelength λ=706nm), which is coated with a transparent thin film of refractive index n1=(1+12)12=1.30656 (e.g., vacuum-deposited fluoride material) and of metric thickness equal to half of the vacuum wavelength of incident light, d=λ2. The ambient medium of evanescent refraction is assumed to be vacuum, air, or an inert gas. Wavelength shifts of ±50nm, or changes of the internal angle of incidence of ±1° around 45°, cause phase errors of only a few degrees. The reflected and incident polarization states are nearly identical in the presence of such small phase errors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, J. Opt. Soc. Am. A 21, 1559 (2004).
    [CrossRef]
  2. R. J. King, Rev. Sci. Instrum. 43, 617 (1966).
    [CrossRef]
  3. J. M. Bennett, Appl. Opt. 9, 2123 (1970).
    [CrossRef] [PubMed]
  4. I. Filinski and T. Skettrup, Appl. Opt. 23, 2747 (1984).
    [CrossRef] [PubMed]
  5. E. Spiller, Appl. Opt. 23, 3544 (1984).
    [CrossRef] [PubMed]
  6. R. M. A. Azzam and H. K. Khanfar, Appl. Opt. 47, 4878 (2008).
    [CrossRef] [PubMed]
  7. R. M. A. Azzam, Opt. Lett. 7, 80 (1982).
    [CrossRef] [PubMed]
  8. Z. P. Wang, W. M. Sun, S. L. Ruan, C. Kang, Z. J. Huang, and S. Q. Zhang, Appl. Opt. 36, 2802 (1997).
    [CrossRef] [PubMed]
  9. E. J. Galvez, Opt. Lett. 26, 971 (2001).
    [CrossRef]
  10. Y. K. Cheng and J. L. Chern, J. Opt. Soc. Am. A 25, 1558 (2008).
    [CrossRef]
  11. R. M. A. Azzam, Opt. Lett. 10, 107 (1985).
    [CrossRef] [PubMed]
  12. R. M. A. Azzam, Opt. Lett. 10, 110 (1985).
    [CrossRef] [PubMed]
  13. J. A. Dobrowolski, in Handbook of Optics, Vol. 1, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 42.
  14. E. Cojocaru, Appl. Opt. 33, 2678 (1994).
    [CrossRef] [PubMed]
  15. Data available at http://www.us.schott.com/optics_devices/english/products/flash/abbediagramm_flash.html.
  16. Data available at http://www.ohara-inc.co.jp/en/product/optical/opticalglass/data.html.
  17. W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.
  18. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

2008 (2)

2004 (1)

2001 (1)

1997 (1)

1995 (2)

J. A. Dobrowolski, in Handbook of Optics, Vol. 1, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 42.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.

1994 (1)

1987 (1)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

1985 (2)

1984 (2)

1982 (1)

1970 (1)

1966 (1)

R. J. King, Rev. Sci. Instrum. 43, 617 (1966).
[CrossRef]

Azzam, R. M. A.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Bennett, J. M.

Cheng, Y. K.

Chern, J. L.

Cojocaru, E.

Dobrowolski, J. A.

J. A. Dobrowolski, in Handbook of Optics, Vol. 1, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 42.

Filinski, I.

Galvez, E. J.

Harris, T. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.

Huang, Z. J.

Kang, C.

Khanfar, H. K.

King, R. J.

R. J. King, Rev. Sci. Instrum. 43, 617 (1966).
[CrossRef]

Ruan, S. L.

Skettrup, T.

Spiller, E.

Sun, W. M.

Thomas, M. E.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.

Tropf, W. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.

Wang, Z. P.

Zhang, S. Q.

Appl. Opt. (6)

J. Opt. Soc. Am. A (2)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

R. J. King, Rev. Sci. Instrum. 43, 617 (1966).
[CrossRef]

Other (5)

J. A. Dobrowolski, in Handbook of Optics, Vol. 1, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 42.

Data available at http://www.us.schott.com/optics_devices/english/products/flash/abbediagramm_flash.html.

Data available at http://www.ohara-inc.co.jp/en/product/optical/opticalglass/data.html.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Chap. 33.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

TIR by a right-angle prism at an angle of incidence ϕ = 45 ° . The prism is coated with a transparent thin film of half-wavelength metric thickness to maintain the state of polarization of light on reflection for all incident states. The prism and film refractive indices are given by Eqs. (5, 6) and the ambient medium (of evanescent refraction) is assumed to be vacuum, air, or an inert gas. The p and the s directions represent the linear polarizations parallel and perpendicular to the plane of incidence, respectively.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n 1 = ( n 0 n 2 ) 1 2 ,
d = 1 2 D ϕ = ( λ 4 ) ( n 1 2 n 0 2 sin 2 ϕ ) 1 2 ,
n 1 = n 0 1 2 , d = ( λ 4 ) ( n 0 1 2 n 0 2 ) 1 2 .
2 < n 0 < 2 .
n 0 = 1 + 1 2 = 1.70711 .
n 1 = ( 1 + 1 2 ) 1 2 = 1.30656 ,
d = λ 2 ;
ϕ c 02 = sin 1 ( 2 2 ) = 35.8586 ° ,
ϕ c 01 = sin 1 ( 2 2 ) 1 2 = 49.9396 ° .
Δ p = Δ s = 180 ° 2 tan 1 ( n 0 cos ϕ ( n 0 2 sin 2 ϕ 1 ) 1 2 ( n 0 n 0 2 sin 2 ϕ ) ) .
Δ p = Δ s = 180 ° 2 tan 1 ( 5 + 4 2 ) 1 2 = 34.0625 ° .
δ p = 2 δ s = 133.1543 ° .
Δ = Δ p Δ s ,
η = cos 2 ( Δ 2 ) .

Metrics