Abstract

We study how retardation leads to interference effects in radiatively coupled plasmonic nanoparticles. We show that inclined illumination through a glass substrate on two plasmonic particles results in either an enhanced field or an attenuated field localized at the position of the first particle. Periodic intensity blinking of the first particle is observed as a function of the particle separation. This phenomenon is nonsymmetric, and almost no blinking is observed on the second particle. The effect is strongest when the illumination angle is chosen such that the optical retardation path in the substrate coincides with the particle distance. Implications of this plasmonic blinking for near-field measurements are discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription