Abstract

We introduce a microfluidic refractive index sensor based on a directional coupler architecture using solid-core photonic crystal fibers. The sensor achieves very high sensitivity by coupling the core mode to a mode in the adjacent fluid-filled waveguide that is beyond modal cutoff, and with strong field overlap. We demonstrate the device through the selective infiltration of a single hole with fluid along a microstructured optical fiber. A detection limit of 4.6×107 refractive index units has been derived from measurements with a sensitivity of 30,100nm per refractive index unit, which is the highest for a fiber device to date.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
    [CrossRef] [PubMed]
  2. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
    [CrossRef]
  3. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001).
    [CrossRef] [PubMed]
  4. L. Rindorf and O. Bang, J. Opt. Soc. Am. B 25, 310 (2008).
    [CrossRef]
  5. N. M. Litchinitser and E. Poliakov, Appl. Phys. B 81, 347 (2005).
    [CrossRef]
  6. L. Rindorf and O. Bang, Opt. Lett. 33, 563 (2008).
    [CrossRef] [PubMed]
  7. I. M. White and X. D. Fan, Opt. Express 16, 1020 (2008).
    [CrossRef] [PubMed]
  8. P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, Opt. Lett. 31, 2103 (2006).
    [CrossRef] [PubMed]
  9. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 19, 2331 (2002).
    [CrossRef]
  10. W. Groh and A. Zimmermann, Macromolecules 24, 6660 (1991).
    [CrossRef]

2008 (4)

2006 (1)

2005 (1)

N. M. Litchinitser and E. Poliakov, Appl. Phys. B 81, 347 (2005).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
[CrossRef]

1991 (1)

W. Groh and A. Zimmermann, Macromolecules 24, 6660 (1991).
[CrossRef]

Bang, O.

Botten, L. C.

de Sterke, C. M.

Eggleton, B. J.

Fan, X. D.

I. M. White and X. D. Fan, Opt. Express 16, 1020 (2008).
[CrossRef] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Groh, W.

W. Groh and A. Zimmermann, Macromolecules 24, 6660 (1991).
[CrossRef]

Hale, A.

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Kerbage, C.

Kuhlmey, B. T.

Litchinitser, N. M.

N. M. Litchinitser and E. Poliakov, Appl. Phys. B 81, 347 (2005).
[CrossRef]

Magi, E. C.

Maystre, D.

McPhedran, R. C.

Moore, E. D.

Poliakov, E.

N. M. Litchinitser and E. Poliakov, Appl. Phys. B 81, 347 (2005).
[CrossRef]

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Renversez, G.

Rindorf, L.

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Steinvurzel, P.

Sun, Y. Z.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Westbrook, P. S.

White, I. M.

I. M. White and X. D. Fan, Opt. Express 16, 1020 (2008).
[CrossRef] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

White, T. P.

Windeler, R. S.

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Zimmermann, A.

W. Groh and A. Zimmermann, Macromolecules 24, 6660 (1991).
[CrossRef]

Anal. Chim. Acta (1)

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

N. M. Litchinitser and E. Poliakov, Appl. Phys. B 81, 347 (2005).
[CrossRef]

Fresenius' J. Anal. Chem. (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius' J. Anal. Chem. 362, 349 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Macromolecules (1)

W. Groh and A. Zimmermann, Macromolecules 24, 6660 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of our device architecture featuring a directional coupler with an analyte channel waveguide. (b) Realization in a PCF structure. (c) Microscope image of the original PCF. (d) Microscope image of the glued PCF end facet.

Fig. 2
Fig. 2

Principle of the sensor: schematic effective index curves of the PCF’s core mode (dashed curve), and the satellite waveguide mode (solid full curve). Coupling occurs at the crossing of these curves, close to λ c .

Fig. 3
Fig. 3

Diagram of the experimental setup of the sensing system.

Fig. 4
Fig. 4

Normalized transmission spectra of core waveguide at 50.7 ° C and 51.7 ° C , respectively. (a) (Inset) Measured far-field mode image pattern of core and satellite waveguides with a 1500 nm laser at λ res 1 .

Metrics