Abstract

We demonstrate what we believe to be the highest efficiency obtained to date in a transversely diode-pumped Nd3+:YLiF4 slab laser operating at 1053nm. The compact 11-cm-long laser cavity configuration is based on total internal reflection of the intracavity beam at the pump facet of the gain crystal to improve the overlap with the pump radiation. Multimode operation with 9.5W of output power and an efficiency of 45% is obtained for 21W of pump power in a single-pass configuration. Using a second pass through the crystal and a new mode-controlling technique, the beam quality is improved to the diffraction limit with 6.9W of output power and 33% of optical-to-optical efficiency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
    [CrossRef]
  2. D. Li, Z. Ma, R. Haas, A. Schell, J. Simon, R. Diart, P. Shi, P. Hu, P. Loosen, and K. Du, Opt. Lett. 32, 1272 (2007).
    [CrossRef] [PubMed]
  3. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
    [CrossRef]
  4. A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
    [CrossRef]
  5. J. E. Bernard and A. J. Alcock, Opt. Lett. 18, 968 (1993).
    [CrossRef] [PubMed]
  6. A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
    [CrossRef]
  7. K. Kubodera and K. Otsuka, Appl. Opt. 50, 653 (1979).

2007 (2)

D. Li, Z. Ma, R. Haas, A. Schell, J. Simon, R. Diart, P. Shi, P. Hu, P. Loosen, and K. Du, Opt. Lett. 32, 1272 (2007).
[CrossRef] [PubMed]

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

2003 (1)

A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
[CrossRef]

1998 (1)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

1994 (1)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

1993 (1)

1979 (1)

K. Kubodera and K. Otsuka, Appl. Opt. 50, 653 (1979).

Alcock, A. J.

Bernard, J. E.

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Damzen, M. J.

A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
[CrossRef]

Dergachev, A.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Diart, R.

Du, K.

Flint, J. H.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

Haas, R.

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Hu, P.

Isvanova, Y.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Kubodera, K.

K. Kubodera and K. Otsuka, Appl. Opt. 50, 653 (1979).

Li, D.

Loosen, P.

Ma, Z.

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

Minassian, A.

A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
[CrossRef]

Moulton, P. F.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Otsuka, K.

K. Kubodera and K. Otsuka, Appl. Opt. 50, 653 (1979).

Pati, B.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

Pollnau, M.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Schell, A.

Shi, P.

Simon, J.

Slobodtchikov, E. V.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Thompson, B.

A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
[CrossRef]

Wall, K. F.

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Weber, H. P.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

Weber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

Appl. Opt. (1)

K. Kubodera and K. Otsuka, Appl. Opt. 50, 653 (1979).

Appl. Phys. B (1)

A. Minassian, B. Thompson, and M. J. Damzen, Appl. Phys. B 76, 341 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, IEEE J. Quantum Electron. 30, 1605 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dergachev, J. H. Flint, Y. Isvanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, IEEE J. Sel. Top. Quantum Electron. 13, 647 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Phys. Rev. B 58, 16076 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the (a) single-bounce and (b) double-bounce cavity resonator configuration. The focal length of the spherical lens f is 2.5 cm , M1 is a curved folding mirror, M2 is a plane output coupling mirror, and M3 is a flat high reflector.

Fig. 2
Fig. 2

(a) Output power versus diode pump power for single- and double-bounce configurations. (b) Threshold pump power of the TEM 00 mode divided by the threshold pump power of the TEM 10 mode for different products of absorption coefficient times laser beam radius at pump facet measured in the x direction.

Fig. 3
Fig. 3

Output beam profiles without using any focusing lens. (a) Highly multimode output of the single-bounce resonator. (b) Diffraction-limited output of the double-bounce resonator.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s 0 r 1 + S 0 c s 0 d V = s N r 1 + S 0 c s 0 d V ,
P th , 00 p th , 10 = s 1 r d V s 0 r d V = 1 + α 2 w x 2 4 α w x 2 π exp ( α 2 w x 2 8 ) ( 1 erf [ α w x 2 2 ] ) 1 ,

Metrics