Abstract

Conventional methods of quadrature phase-shifting holography require two holograms and either intensity distribution of the reference wave or that of the object wave to reconstruct an original object without the zero order and the twin-image noise in an on-axis holographic recording setup. We present a technique called two-step-only quadrature phase-shifting holography in which solely two quadrature-phase holograms are required. Neither reference-wave intensity nor an object-wave intensity measurement is needed in the technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor and W. P. Goss, J. Opt. Soc. Am. 56, 849 (1966).
    [CrossRef]
  2. C. B. Burckhardt and L. H. Enloe, Bell Syst. Tech. J. 42, 1529 (1969).
  3. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  4. J. Rosen, G. Indebetouw, and G. Brooker, Opt. Express 14, 4280 (2006).
    [CrossRef]
  5. S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
    [CrossRef]
  6. B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and R. S. Sirohi, Opt. Express 14, 11598 (2006).
    [CrossRef] [PubMed]
  7. I. Yamaguchi, Opt. Photonics News 19, 48 (2008).
    [CrossRef]
  8. P. Guo and A. J. Devaney, Opt. Lett. 29, 857 (2004).
    [CrossRef] [PubMed]
  9. Y. Wang, Y. Zhen, H. Zhang, and Y. Zhang, Chin. Opt. Lett. 2, 141 (2004).
  10. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, Opt. Lett. 31, 1414 (2006).
    [CrossRef] [PubMed]
  11. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Appl. Opt. 47, D183 (2008).
    [CrossRef] [PubMed]
  12. L. Chen, C. Y. Lin, H. F. Yau, and M. K. Kuo, Opt. Express 15, 11601 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (3)

2004 (2)

2000 (1)

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

1998 (1)

1969 (1)

C. B. Burckhardt and L. H. Enloe, Bell Syst. Tech. J. 42, 1529 (1969).

1966 (1)

Awatsuji, Y.

Bhaduri, B.

Brooker, G.

Burckhardt, C. B.

C. B. Burckhardt and L. H. Enloe, Bell Syst. Tech. J. 42, 1529 (1969).

Cai, L. Z.

Chen, L.

Devaney, A. J.

Dong, G. Y.

Enloe, L. H.

C. B. Burckhardt and L. H. Enloe, Bell Syst. Tech. J. 42, 1529 (1969).

Gabor, D.

Goss, W. P.

Guo, P.

Indebetouw, G.

Kaneko, A.

Kothiyal, M. P.

Koyama, T.

Kubota, T.

Kuo, M. K.

Lai, S.

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Lin, C. Y.

Matoba, O.

Meng, X. F.

Mohan, N. K.

Neifeld, M. A.

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Nishio, K.

Rosen, J.

Shen, X. X.

Sirohi, R. S.

Tahara, T.

Ura, S.

Wang, Y.

Wang, Y. R.

Xu, X. F.

Yamaguchi, I.

I. Yamaguchi, Opt. Photonics News 19, 48 (2008).
[CrossRef]

T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
[CrossRef]

Yang, X. L.

Yau, H. F.

Zhang, H.

Zhang, T.

Zhang, Y.

Zhen, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical experimental setup of QPSH.

Fig. 2
Fig. 2

Correlation factors of various phase-shift holograms versus intensity ratio.

Fig. 3
Fig. 3

NCP curves for different A based on TSO-QPSH.

Fig. 4
Fig. 4

Image reconstruction for different A based on TSO-QPSH: (a) A = 3 , (b) A = 1 , (c) A = 0.33 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I H 1 = R + ϑ 2 = I O + 2 Re ( ϑ ) R ,
I H 2 = e j π 2 R + ϑ 2 = j R + ϑ 2 = I O + 2 Im ( ϑ ) R ,
I O = R 2 + ϑ 2 .
I C = I H 1 + j I H 2 = I O + j I O + 2 R [ Re ( ϑ ) + j Im ( ϑ ) ] = I O + j I O + 2 R ϑ ,
H PHS = ( I H 1 I O ) + j ( I H 2 I O ) .
2 I O 2 ( 4 R 2 + 2 I H 1 + 2 I H 2 ) I O + ( I H 1 2 + I H 2 2 + 4 R 4 ) = 0 .
I O = 2 R 2 + I H 1 + I H 2 2 ± ( 2 R 2 + I H 1 + I H 2 ) 2 2 ( I H 1 2 + I H 2 2 + 4 R 4 ) 2 .
I H 1 + I H 2 + 2 R 2 = 2 I O + 2 [ R + Re ( ϑ ) + Im ( ϑ ) ] R ,
I O = 2 R 2 + I H 1 + I H 2 2 [ R + Re ( ϑ ) + Im ( ϑ ) ] R .
A R 1 2 [ max ( ϑ ) + min ( ϑ ) ] ,
CF [ E R 2 I orig ] peak E R 2 ,
NCP real { [ E T E R ] max } [ E R E R ] max ,

Metrics