Abstract

The interaction between localized and propagating surface plasmons is investigated in a structure consisting of a two-dimensional periodic gold nanoparticle array, an SiO2 spacer, and a gold film. The resonance wavelengths of the two types of surface plasmons supported by the structure are tailored by changing the gold nanoparticle size and the array period. An anticrossing of the resonance positions is observed in the reflection spectra, demonstrating the strong coupling between localized and propagating surface plasmons.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
    [CrossRef]
  3. W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
    [CrossRef]
  4. H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
    [CrossRef]
  5. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
    [CrossRef]
  6. N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
    [CrossRef]
  7. A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
    [CrossRef]
  8. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  9. S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
    [CrossRef]
  10. P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
    [CrossRef]
  11. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
    [CrossRef]

2008 (1)

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

2007 (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

2005 (3)

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
[CrossRef]

2004 (1)

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

1998 (2)

1984 (1)

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Badenes, G.

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Cesario, J.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Ding, C. G.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Enoch, S.

Ghoshal, A.

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Holland, W. R.

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Kik, P. G.

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Nordlander, P.

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Prodan, E.

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Puscasu, I.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Quidant, R.

Rakic, A. D.

Schatz, G. C.

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

J. Appl. Phys. (2)

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Nano Lett. (1)

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Sketch of the structure’s configuration. (b) Scanning electron micrographs of the gold disk array on the Si O 2 spacer and the gold film. (c) Near-field spectra of an isolated disk and a disk array ( a = 780 nm ) . Black solid line, near-field intensity at position 1 for an isolated disk. Blue square, near-field intensity at position 1 for the gold disk array case. Red triangle, E z amplitude at position 2 for the gold disk array case. Dashed curves, resonance wavelengths of the (1,1) and (1,0) PSP modes. Inset, side view of the structure.

Fig. 2
Fig. 2

Resonance positions of the LSP and the (1,0) PSP mode (a) as a function of the grating period and (b) as a function of the diameter of the gold disk. Dots, simulation results of the near-field intensity at position 1. Triangles, experimental results obtained by reflection measurements. Dashed curves, resonance wavelengths of the (1,0) PSP mode (calculated by theory). Dotted curves, resonance wavelengths of isolated gold disks on the Si O 2 spacer and the gold film (calculated by simulations).

Fig. 3
Fig. 3

(a) Reflection measurement setup. (b) Measured and (c) calculated reflection spectra. Grating constant a = 780 nm , disk diameter d = 100 nm (solid), d = 120 nm (dashed), and d = 150 nm (dotted); disk thickness = 40 nm .

Metrics