Abstract

We report a phase-modulation method for measuring arrayed waveguide grating (AWG) phase error in the frequency domain. By combining the method with a digital sampling technique that we have already reported, we can measure the phase error within an accuracy of ±0.055 rad for the center 90% waveguides in the array even when no carrier frequencies are generated in the beat signal from the interferometer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.
  2. K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
    [CrossRef]
  3. K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
    [CrossRef]
  4. J. Gehler and W. Spahn, Electron. Lett. 36, 338 (2000).
    [CrossRef]
  5. W. Chen, Y.-J. Chen, M. Yan, and B. McGinnis, J. Lightwave Technol. 21, 198 (2003).
    [CrossRef]

2008 (1)

K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
[CrossRef]

2003 (1)

2000 (1)

J. Gehler and W. Spahn, Electron. Lett. 36, 338 (2000).
[CrossRef]

1996 (1)

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

Abe, M.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Chen, W.

Chen, Y. -J.

Gehler, J.

J. Gehler and W. Spahn, Electron. Lett. 36, 338 (2000).
[CrossRef]

Hibino, Y.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Hirose, T.

K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
[CrossRef]

Inoue, Y.

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Ishii, M.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

McGinnis, B.

Okamoto, K.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Shibata, T.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Spahn, W.

J. Gehler and W. Spahn, Electron. Lett. 36, 338 (2000).
[CrossRef]

Takada, K.

K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
[CrossRef]

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Yamada, H.

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Yan, M.

Yokota, T.

K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
[CrossRef]

Electron. Lett. (2)

K. Takada, T. Yokota, and T. Hirose, Electron. Lett. 44, 1484 (2008).
[CrossRef]

J. Gehler and W. Spahn, Electron. Lett. 36, 338 (2000).
[CrossRef]

J. Lightwave Technol. (2)

W. Chen, Y.-J. Chen, M. Yan, and B. McGinnis, J. Lightwave Technol. 21, 198 (2003).
[CrossRef]

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

Other (1)

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of European Conference on Optical Communications (ECOC 2000) (2000), paper PD3-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical paths in test and reference arms in a fiber-optic interferometer. (a) All paths in the test arm are longer than the reference arm. (b) One of the paths including the k 0 arrayed waveguide is as long as the reference arm.

Fig. 2
Fig. 2

Experimental setup for measuring the phase error of an AWG: PC1–PC3, polarization controllers.

Fig. 3
Fig. 3

Derivation of the interferogram in Fig. 1b without the phase modulation method. (a) Main beat signal V ( r ) ( t j ) and reference beat signal around 1548.7 nm. (b) Interferogram derived from the beat signals.

Fig. 4
Fig. 4

Derivation of the interferogram in Fig. 1b with the phase modulation method. (a) Fundamental A f ( t j ) and second A 2 f ( t j ) harmonics derived with digital lock-in detection. (b) Transmission spectra of the AWG around 1548.7 nm that were calculated from the complex signal together with the directly measured spectrum shown by open circles. (c) Interferogram derived from the complex signal.

Fig. 5
Fig. 5

Difference between the phase-error distribution derived from the interferogram shown in Fig. 4c and the true phase error distribution of the AWG. The relative light power split to each arrayed waveguide is also shown in a decibel scale.

Metrics