Abstract

Nonlinear couplings induced by crystal diffusion and spatial inhomogeneities of the gain have been suppressed over a broad range of angular velocities in a solid-state ring laser gyro by vibrating the gain crystal at 168kHz and 0.4μm along the laser cavity axis. This device behaves in the same way as a typical helium–neon ring laser gyro, with a zone of frequency lock-in (or dead band) resulting from the backscattering of light on the cavity mirrors. Furthermore, it is shown that the level of angular random-walk noise in the presence of mechanical dithering depends only on the quality of the cavity mirrors, as is the case with typical helium–neon ring laser gyros.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963).
    [CrossRef]
  2. F. Aronowitz, in Laser Applications (Academic, 1971), p. 133.
  3. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
    [CrossRef] [PubMed]
  4. A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
    [CrossRef]
  5. H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970).
    [CrossRef]
  6. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
    [CrossRef] [PubMed]
  7. S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
    [CrossRef]
  8. S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
    [CrossRef]
  9. F. Aronowitz, in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).
  10. J. Killpatrick, IEEE Spectrum 4, 44-55 (1967).
    [CrossRef]

2008

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

2007

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

2006

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

1986

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

1970

H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970).
[CrossRef]

1967

J. Killpatrick, IEEE Spectrum 4, 44-55 (1967).
[CrossRef]

1963

W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

Aronowitz, F.

F. Aronowitz, in Laser Applications (Academic, 1971), p. 133.

F. Aronowitz, in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).

Aspect, A.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Bouyer, P.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Danielmeyer, H. G.

H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970).
[CrossRef]

Davis, D.

W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

Dotsenko, A.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Feugnet, G.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Gutty, F.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

Harayama, T.

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

Inagaki, K.

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

Killpatrick, J.

J. Killpatrick, IEEE Spectrum 4, 44-55 (1967).
[CrossRef]

Kornienko, L.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Kravtsov, N.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Lariontsev, E.

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Macek, W.

W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

Nanii, O.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Pocholle, J.-P.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Schwartz, S.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Shelaev, A.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Sunada, S.

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

Tamura, S.

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

Turner, E. H.

H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970).
[CrossRef]

Appl. Phys. Lett.

W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970).
[CrossRef]

IEEE Spectrum

J. Killpatrick, IEEE Spectrum 4, 44-55 (1967).
[CrossRef]

Phys. Rev. A

S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007).
[CrossRef]

Phys. Rev. Lett.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Sov. J. Quantum Electron.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986).
[CrossRef]

Other

F. Aronowitz, in Laser Applications (Academic, 1971), p. 133.

F. Aronowitz, in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical frequency response curves (not to scale) of a He–Ne ring laser gyroscope (as derived, for example, in [2]) on the one hand and of a Nd:YAG RLG (as reported for example in [3]) on the other hand.

Fig. 2
Fig. 2

Schematic drawing of our experimental setup (see text for full description).

Fig. 3
Fig. 3

Frequency response curves of the solid-state RLG with and without crystal vibration. The relaxation frequency in this case is 17 kHz . The inset is a magnification around lower angular velocities. Also shown is the result of numerical simulations, using experimentally measured laser parameters (see text).

Fig. 4
Fig. 4

Angular error after 1 s for 500 successive runs of the same numerical simulation (see text). The measured standard deviation is 3.3 ± 0.2 in the He–Ne case, and 3.0 ± 0.15 in the Nd:YAG case.

Metrics