Abstract

We explore slow-light propagation in a dielectric slab waveguide with anisotropic metamaterial cladding, which could be realized through multilayer structure with alternating metal and dielectric films. We show that although the loss in the realistic metamaterial will destroy the zero-energy velocity condition, the loss effect can be fully compensated by incorporating gain in the core material, which recovers the stopping and storing of light propagation in the waveguide. We demonstrate full-wave electromagnetic simulations on the realistic waveguide that validate our theoretical analysis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, Nat. Photonics 2, 451 (2008).
    [Crossref]
  2. M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
    [Crossref]
  3. M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
    [Crossref] [PubMed]
  4. J. He and S. He, IEICE Trans. Electron. 16, 96 (2006).
  5. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
    [Crossref] [PubMed]
  6. Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
    [Crossref]
  7. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
    [Crossref] [PubMed]
  8. Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
    [Crossref] [PubMed]
  9. A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
    [Crossref]
  10. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
    [Crossref]
  11. T. Jiang, J. Zhao, and Y. Feng, Opt. Express 17, 170 (2009).
    [Crossref] [PubMed]
  12. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, J. Opt. Soc. Am. B 23, 498 (2006).
    [Crossref]
  13. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  14. M Lisak, J. Phys. A 9, 1145 (1976).
    [Crossref]
  15. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics) (Elsevier, 2007), Chap. 5.

2009 (2)

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[Crossref] [PubMed]

T. Jiang, J. Zhao, and Y. Feng, Opt. Express 17, 170 (2009).
[Crossref] [PubMed]

2008 (6)

A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
[Crossref]

Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

L. V. Hau, Nat. Photonics 2, 451 (2008).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[Crossref]

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (1)

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

1976 (1)

M Lisak, J. Phys. A 9, 1145 (1976).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Dignam, M. M.

A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
[Crossref]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

Elser, J.

Fan, S.

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

Feng, Y.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, Nat. Photonics 2, 451 (2008).
[Crossref]

He, J.

J. He and S. He, IEICE Trans. Electron. 16, 96 (2006).

He, S.

J. He and S. He, IEICE Trans. Electron. 16, 96 (2006).

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[Crossref] [PubMed]

Huang, Y. J.

Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
[Crossref]

Hughes, S.

A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
[Crossref]

Jiang, T.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kawata, S.

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics) (Elsevier, 2007), Chap. 5.

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[Crossref]

Lisak, M

M Lisak, J. Phys. A 9, 1145 (1976).
[Crossref]

Lu, W. T.

Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
[Crossref]

Narimanov, E. E.

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[Crossref]

Podolskiy, V. A.

Reza, A. M.

A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
[Crossref]

Shalaev, V. M.

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics) (Elsevier, 2007), Chap. 5.

Sridhar, S.

Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
[Crossref]

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[Crossref] [PubMed]

Wangberg, R.

Yanik, M. F.

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

Zhao, J.

IEICE Trans. Electron. (1)

J. He and S. He, IEICE Trans. Electron. 16, 96 (2006).

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

M Lisak, J. Phys. A 9, 1145 (1976).
[Crossref]

Nat. Photonics (2)

L. V. Hau, Nat. Photonics 2, 451 (2008).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[Crossref]

Nature (3)

A. M. Reza, M. M. Dignam, and S. Hughes, Nature 455, E10 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 455, E11 (2008).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77, 063836 (2008).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Phys. Rev. Lett. (3)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 100, 256803 (2008).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

Other (1)

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics) (Elsevier, 2007), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematics of the slab waveguide. The slab and the cladding are extended infinitely along the y axis. (b) Dispersion curves for the TM modes in the waveguide of lossless case at the working wavelength of 382 nm . Gray, black, and light gray curves account for forward-propagating modes, backward-propagating modes, and complex guided modes, respectively [11]. Solid and dashed curves are for real and imaginary parts of the effective refraction index n eff , respectively. The black point on the TM 3 curve corresponds to the degeneracy point with zero group velocity.

Fig. 2
Fig. 2

(a) Loss and (b) gain effect on the dispersion of the TM 3 mode in the slab waveguide (corresponding to lossy and gain cases). (c) Energy velocity for the TM 3 mode. (d) Energy velocity when incorporating different gain into the core dielectric slab.

Fig. 3
Fig. 3

(a) Geometry of the linearly tapered waveguide with anisotropic metamaterial (AMM) cladding and the FDTD simulations of the Poynting vector (z component) distribution when a monochromatic cw is injected into the waveguide for (b) the lossless case, (c) the lossy case, and (d) the gain case.

Tables (1)

Tables Icon

Table 1 Material Parameters Used in Analyses and Simulations

Metrics