Abstract

Single-laser-shot temperature measurements at a data rate of 1 kHz employing femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of N2 are demonstrated. The measurements are performed using a chirped-probe pulse to map the time-dependent frequency-spread dephasing of the Raman coherence, which is created by 80-fs pump and Stokes beams, into the spectrum of the coherent anti-Stokes Raman scattering signal pulse. Temperature is determined from the spectral shape of the fs-CARS signal for probe delays of 2  ps with respect to the pump-Stokes excitation. The accuracy and precision of the measurements for the 300–2400 K range are found to be 1%6% and 1.5%3%, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
    [CrossRef]
  2. T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
    [CrossRef]
  3. P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
    [CrossRef]
  4. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
    [CrossRef]
  5. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
    [CrossRef] [PubMed]
  6. T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
    [CrossRef]

2008

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

2007

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

2006

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

2002

2001

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

1999

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Beaud, P.

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

Frey, H. -M.

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

Gord, J. R.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Kinnius, P. J.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

Kompa, K. -L.

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Lang, T.

T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Lucht, R. P.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Meyer, T. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Motzkus, M.

T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Roy, S.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Appl. Phys. Lett.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Chem. Phys. Lett.

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

J. Chem. Phys.

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Commun.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Opt. Commun. 281, 319 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of single-shot fs-CARS experimental apparatus.

Fig. 2
Fig. 2

Theoretically calculated resonant and nonresonant components of the fs-CARS signal, showing different modulations.

Fig. 3
Fig. 3

(a) Experimentally measured single-shot fs-CARS spectra along with the least-squares theoretical fit and (b) PDF of extracted temperatures for 1000 consecutive laser shots in a heated gas cell at 900 K.

Fig. 4
Fig. 4

Experimental and theoretical single-shot fs-CARS spectra in a H 2 –air flame stabilized over a Hencken burner for (a) Φ = 0.5 and (b) Φ = 1.0 . The corresponding temperature PDFs for 1000 consecutive laser shots are also shown in panels (c) and (d).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E sig ( t ) = E pr ( t ) P res ( t ) + E pr ( t ) P nres ( t ) ,
P res ( t ) = β [ t E p ( t ) E S ( t ) d t ] i { Δ N i ( d σ d Ω ) i cos ( ω i t + ϕ ) exp ( Γ i t ) } ,
P nres ( t ) = α E p ( t ) E s ( t ) ,
E pr ( t ) = E 0 , pr   exp [ ( t t 0 , pr ) 2 / τ pr 2 ] cos ( ω 0 , pr t β pr t 2 ) ,
E sig ( ω ) = + [ E pr ( t ) P res ( t ) + E pr ( t ) P nres ( t ) ] exp ( i ω t ) d t ,
S CARS ( ω ) = | E sig ( ω ) | 2 .

Metrics