Abstract

The nonlinear dynamics of an optically injected semiconductor laser are explored for radio-over-fiber uplink transmission. Under optical injection locking, the laser at the base station is operated in the period-one oscillation state, where its intensity oscillates at a tunable microwave frequency. When the oscillation is tuned to the subcarrier frequency, it is further locked by the uplink microwave signal. By simply using an ordinary 2.5-Gbps-grade semiconductor laser, uplink transmission of the phase-shift keying (PSK) signal at a subcarrier of 16โ€‰GHz with bit-error rate of less than 10โˆ’11 is demonstrated experimentally. Microwave PSK to optical PSK is achieved at the double-locked laser, which allows all-optical demodulation without any high-speed microwave electronics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription