Abstract

We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time in the millisecond range. The strength of the loss peak is controlled electrically, and the spectral position of the loss peak is thermally tunable. This compact design results in a stable grating and permits this device to be more easily applied in practical systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  3. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
    [CrossRef]
  4. G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
    [CrossRef]
  5. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 331 (2004).
    [CrossRef] [PubMed]
  6. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, Opt. Lett. 31, 2675 (2006).
    [CrossRef] [PubMed]
  7. D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, Opt. Express 15, 3513 (2007).
    [CrossRef] [PubMed]
  8. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, Opt. Express 15, 7901 (2007).
    [CrossRef] [PubMed]
  9. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
    [CrossRef]
  10. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, Opt. Express 12, 1540 (2004).
    [CrossRef] [PubMed]
  11. J. Lægsgaard, J. Opt. A, Pure Appl. Opt. 6, 798 (2004).
    [CrossRef]
  12. L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
    [CrossRef]
  13. S. T. Lagerwall, P. G. Rudqvist, and D. S. Hermann, Liquid Crystal-Optical Properties and Basic Devices (Marcel Dekker, 2003).

2009 (1)

L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

2004 (3)

2003 (1)

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

2002 (1)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1996 (1)

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Alkeskjold, T. T.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, Opt. Express 15, 7901 (2007).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Bhatia, V.

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Birks, T. A.

Bjarklev, A.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Brambilla, G.

de Sterke, C.

Dunn, S.

Eggleton, B.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Fevrier, S.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Fotiadi, A. A.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Hermann, D. S.

S. T. Lagerwall, P. G. Rudqvist, and D. S. Hermann, Liquid Crystal-Optical Properties and Basic Devices (Marcel Dekker, 2003).

Humbert, G.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Judkins, J. B.

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kakarantzas, G.

Kim, B. Y.

Kim, J. C.

Lægsgaard, J.

Lagerwall, S. T.

S. T. Lagerwall, P. G. Rudqvist, and D. S. Hermann, Liquid Crystal-Optical Properties and Basic Devices (Marcel Dekker, 2003).

Lee, B. H.

Lee, K. S.

Lemaire, P. J.

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Lim, J. H.

Lim, S. D.

Litchinitser, N.

Malki, A.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

McPhedran, R.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Nikogosyan, D. N.

Noordegraaf, D.

Pagnoux, D.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Rindorf, L.

Roy, P.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Rudqvist, P. G.

S. T. Lagerwall, P. G. Rudqvist, and D. S. Hermann, Liquid Crystal-Optical Properties and Basic Devices (Marcel Dekker, 2003).

Russell, P. St. J.

Scolari, L.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, Opt. Express 15, 7901 (2007).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

Sipe, J. E.

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Slattery, S. A.

Steinvurzel, P.

Vengsarker, M.

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Wei, L.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
[CrossRef]

White, T.

Yeom, D. I.

Electron. Lett. (1)

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005).
[CrossRef]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009).
[CrossRef]

J. Lightwave Technol. (2)

M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Lægsgaard, J. Opt. A, Pure Appl. Opt. 6, 798 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

S. T. Lagerwall, P. G. Rudqvist, and D. S. Hermann, Liquid Crystal-Optical Properties and Basic Devices (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Chip assembly of the LCPBG fiber device. (b) Scanning electron micrograph of the cross section of the fabricated device. Dotted lines show the direction of electric field effectively applied to the LCPBG fiber in different electrode configurations. (c) The grating pitch is 800 μ m constructed by a 400 μ m wide comb-shaped Au electrode and a 400 μ m wide Si O 2 spacing.

Fig. 2
Fig. 2

(a) Transmission bandgap in the wavelength range 1140 1660 nm with and without the voltage, using unpolarized light. Inset, planar aligned E7 in each air hole when the periodic electric field is off and on. (b) Spectral position of the loss peak at 1471 nm as a function of temperature. The inset shows the change of the refractive indices of E7 as a function of temperature.

Fig. 3
Fig. 3

Polarization-dependent loss in the middle of the bandgap at 1400 nm and the attenuation of the loss peak at 1471 nm between two orthogonal polarizations as a function of effective driving voltage for different electrode configurations. Inset, investigation of the polarization dependence of this device for EC1 with the driving voltage of 70 V rms .

Fig. 4
Fig. 4

Measured response time as a function of driving voltage.

Metrics