Abstract

Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid–prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Klahre and H.-C. Flemming, Water Res. 34, 3657 (2000).
    [CrossRef]
  2. A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
    [CrossRef]
  3. R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
    [CrossRef] [PubMed]
  4. J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
    [CrossRef]
  5. ISO 7027, Water Quality-Determination of Turbidity (ISO, 1999).
  6. USEPA 180.1, Method 180.1, Determination of Turbidity by Nephelometry (United States Environmental Protection Agency, 1993).
  7. ASTM D6855-03, ASTM D6855-03 Standard Test Method for Determination of Turbidity Below 5 NTU in Static Mode (ASTM, 2003).
  8. J. Räty, K.-E. Peiponen, and T. Asakura, UV-Visible Reflection Spectroscopy of Liquids (Springer, 2004).
  9. H. Matsuoka, Macromol. Rapid Commun. 22, 51 (2001).
    [CrossRef]
  10. M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
    [CrossRef]
  11. I. Fecht and M. Johnson, Meas. Sci. Technol. 10, 612 (1996).
    [CrossRef]
  12. R. K. Erf, Speckle Metrology (Academic, 1978).
  13. F. M. Mirabella Jr., Internal Reflection Spectroscopy: Theory and Applications (Marcel Dekker, 1993).

2004 (1)

M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
[CrossRef]

2003 (1)

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

2001 (1)

H. Matsuoka, Macromol. Rapid Commun. 22, 51 (2001).
[CrossRef]

2000 (1)

J. Klahre and H.-C. Flemming, Water Res. 34, 3657 (2000).
[CrossRef]

1996 (2)

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

I. Fecht and M. Johnson, Meas. Sci. Technol. 10, 612 (1996).
[CrossRef]

1984 (1)

J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
[CrossRef]

Alcaina-Miranda, M. I.

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Asakura, T.

J. Räty, K.-E. Peiponen, and T. Asakura, UV-Visible Reflection Spectroscopy of Liquids (Springer, 2004).

Bes-Pia, A.

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Bjornn, T. C.

J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
[CrossRef]

Brogioli, D.

M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
[CrossRef]

Erf, R. K.

R. K. Erf, Speckle Metrology (Academic, 1978).

Everest, F. H.

J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
[CrossRef]

Fecht, I.

I. Fecht and M. Johnson, Meas. Sci. Technol. 10, 612 (1996).
[CrossRef]

Flemming, H.-C.

J. Klahre and H.-C. Flemming, Water Res. 34, 3657 (2000).
[CrossRef]

Giglio, M.

M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
[CrossRef]

Iborra-Clar, A.

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Iborra-Clar, M. I.

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Johnson, M.

I. Fecht and M. Johnson, Meas. Sci. Technol. 10, 612 (1996).
[CrossRef]

Klahre, J.

J. Klahre and H.-C. Flemming, Water Res. 34, 3657 (2000).
[CrossRef]

Levin, R.

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

Matsuoka, H.

H. Matsuoka, Macromol. Rapid Commun. 22, 51 (2001).
[CrossRef]

Mendoza-Roca, J. A.

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Mirabella, F. M.

F. M. Mirabella Jr., Internal Reflection Spectroscopy: Theory and Applications (Marcel Dekker, 1993).

Morris, R. D.

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

Munasinghe, R. L.

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

Naumova, E. N.

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

Peiponen, K.-E.

J. Räty, K.-E. Peiponen, and T. Asakura, UV-Visible Reflection Spectroscopy of Liquids (Springer, 2004).

Potenza, M. A. C.

M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
[CrossRef]

Räty, J.

J. Räty, K.-E. Peiponen, and T. Asakura, UV-Visible Reflection Spectroscopy of Liquids (Springer, 2004).

Sigler, J. W.

J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
[CrossRef]

Am. J. Public Health (1)

R. D. Morris, E. N. Naumova, R. Levin, and R. L. Munasinghe, Am. J. Public Health 86, 237 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. A. C. Potenza, D. Brogioli, and M. Giglio, Appl. Phys. Lett. 85, 2730 (2004).
[CrossRef]

Desalination (1)

A. Bes-Pia, J. A. Mendoza-Roca, M. I. Alcaina-Miranda, A. Iborra-Clar, and M. I. Iborra-Clar, Desalination 15773 (2003).
[CrossRef]

Macromol. Rapid Commun. (1)

H. Matsuoka, Macromol. Rapid Commun. 22, 51 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

I. Fecht and M. Johnson, Meas. Sci. Technol. 10, 612 (1996).
[CrossRef]

Trans. Am Fish. Soc. (1)

J. W. Sigler, T. C. Bjornn, and F. H. Everest, Trans. Am Fish. Soc. 113, 142 (1984).
[CrossRef]

Water Res. (1)

J. Klahre and H.-C. Flemming, Water Res. 34, 3657 (2000).
[CrossRef]

Other (6)

ISO 7027, Water Quality-Determination of Turbidity (ISO, 1999).

USEPA 180.1, Method 180.1, Determination of Turbidity by Nephelometry (United States Environmental Protection Agency, 1993).

ASTM D6855-03, ASTM D6855-03 Standard Test Method for Determination of Turbidity Below 5 NTU in Static Mode (ASTM, 2003).

J. Räty, K.-E. Peiponen, and T. Asakura, UV-Visible Reflection Spectroscopy of Liquids (Springer, 2004).

R. K. Erf, Speckle Metrology (Academic, 1978).

F. M. Mirabella Jr., Internal Reflection Spectroscopy: Theory and Applications (Marcel Dekker, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup for turbidity measurement from the reflectance data. Upper panel, geometry and dimensions of the prism; lower panel, layout of the sensor.

Fig. 2
Fig. 2

(a) Speckle image of 445 FTU nonabsorbing liquid, (b) dynamic part of the speckle pattern of speckle pattern of (a). The vertical bars indicate the signal level.

Fig. 3
Fig. 3

(a) Absorbance spectra of nonturbid colored samples measured with a spectrophotometer, (b) standard deviation of dynamic speckle as a function of turbidity in FTU units. The curves in (b) have a small offset in vertical direction owing to the absorbance of the sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 exp ( 2 π λ 1 ( sin 2 θ n 21 2 ) 1 2 Z ) ,
I dyn ( x , y , t ) = I ( x , y , t ) I ( x , y , t ) + I ( x , y , t + Δ t ) + I ( x , y , t + 2 Δ t ) 3 ,

Metrics