Abstract

What we believe to be the first demonstration of an edge-emitting Bragg reflection waveguide laser is reported. The laser utilized InGaAs quantum wells emitting at 980 nm, with AlxGa1xAs core and claddings. The lasing mode is centered in a low-index core with a width of 700 nm, hence providing a large mode volume with strong discrimination against any modes other than the fundamental photonic bandgap mode. Single-transverse mode operation is observed with thresholds as low as 157  A/cm2. The propagation losses of the mode were measured for the first time and found to be 11.4cm1.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Abolghasem, J. Han, B. Bijlani, and A. S. Helmy, Opt. Express 17, 9460 (2009).
    [CrossRef] [PubMed]
  2. B. R. West and A. S. Helmy, Opt. Express 14, 4073 (2006).
    [CrossRef] [PubMed]
  3. J. Li and K. S. Chiang, J. Opt. Soc. Am. B 24, 1942 (2007).
    [CrossRef]
  4. A. Fuchida and F. Koyama, IEICE Electron. Express 5, 349 (2008).
    [CrossRef]
  5. T. H. Her, Opt. Express 16, 7197 (2008).
    [CrossRef] [PubMed]
  6. G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
    [CrossRef]
  7. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
    [CrossRef]
  8. A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
    [CrossRef] [PubMed]
  9. L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
    [CrossRef]
  10. A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
    [CrossRef]
  11. J. B. Shellan, W. Ng, A. Yariv, P. Yeh, and A. Cho, Opt. Lett. 2, 136 (1978).
    [CrossRef] [PubMed]
  12. S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
    [CrossRef]
  13. Lumerical Solutions, www.lumerical.com.
  14. D. Hofstetter and R. L. Thornton, IEEE J. Quantum Electron. 34, 1914 (1998).
    [CrossRef]
  15. J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).
    [CrossRef] [PubMed]

2009 (2)

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. Bijlani, and A. S. Helmy, Opt. Express 17, 9460 (2009).
[CrossRef] [PubMed]

2008 (2)

T. H. Her, Opt. Express 16, 7197 (2008).
[CrossRef] [PubMed]

A. Fuchida and F. Koyama, IEICE Electron. Express 5, 349 (2008).
[CrossRef]

2007 (3)

L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
[CrossRef]

S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
[CrossRef]

J. Li and K. S. Chiang, J. Opt. Soc. Am. B 24, 1942 (2007).
[CrossRef]

2006 (2)

B. R. West and A. S. Helmy, Opt. Express 14, 4073 (2006).
[CrossRef] [PubMed]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

2003 (1)

1998 (1)

D. Hofstetter and R. L. Thornton, IEEE J. Quantum Electron. 34, 1914 (1998).
[CrossRef]

1992 (1)

J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).
[CrossRef] [PubMed]

1978 (1)

1976 (1)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Abolghasem, P.

Bijlani, B.

Bowden, C. M.

J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).
[CrossRef] [PubMed]

Chiang, K. S.

Cho, A.

Choi, J. M.

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

Dapkus, P. D.

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

Dasgupta, S.

S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
[CrossRef]

DeRose, G. A.

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

Dowling, J. P.

J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).
[CrossRef] [PubMed]

Fuchida, A.

A. Fuchida and F. Koyama, IEICE Electron. Express 5, 349 (2008).
[CrossRef]

Ghatak, A.

S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
[CrossRef]

Han, J.

Helmy, A. S.

Her, T. H.

Hofstetter, D.

D. Hofstetter and R. L. Thornton, IEEE J. Quantum Electron. 34, 1914 (1998).
[CrossRef]

Hwang, E. H.

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

Koyama, F.

A. Fuchida and F. Koyama, IEICE Electron. Express 5, 349 (2008).
[CrossRef]

Li, J.

Lu, L.

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

Mock, A.

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

Mookherjea, S.

Ng, W.

O'Brien, J.

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

Pal, B. P.

S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
[CrossRef]

Poon, J. K. S.

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

Scherer, A.

L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
[CrossRef]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

Shellan, J. B.

Thornton, R. L.

D. Hofstetter and R. L. Thornton, IEEE J. Quantum Electron. 34, 1914 (1998).
[CrossRef]

West, B. R.

Xu, Y.

Yariv, A.

L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
[CrossRef]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
[CrossRef] [PubMed]

J. B. Shellan, W. Ng, A. Yariv, P. Yeh, and A. Cho, Opt. Lett. 2, 136 (1978).
[CrossRef] [PubMed]

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Yeh, P.

Zhu, L.

L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
[CrossRef]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron. 43, 934 (2007).
[CrossRef]

D. Hofstetter and R. L. Thornton, IEEE J. Quantum Electron. 34, 1914 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mock, L. Lu, E. H. Hwang, J. O'Brien, and P. D. Dapkus, IEEE J. Sel. Top. Quantum Electron. 15, 892 (2009).
[CrossRef]

IEICE Electron. Express (1)

A. Fuchida and F. Koyama, IEICE Electron. Express 5, 349 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006).
[CrossRef]

Opt. Commun. (2)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

S. Dasgupta, A. Ghatak, and B. P. Pal, Opt. Commun. 279, 83 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).
[CrossRef] [PubMed]

Other (1)

Lumerical Solutions, www.lumerical.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Refractive index profile of the structure. The effective index of the PBG mode is indicated by a dashed line. (b) SEM micrograph of a ridge laser cross section. The etch depth is h = 3.6 μ m , and the ridge width is w = 3.2 μ m .

Fig. 2
Fig. 2

(a) L I curves for lasers of 500 μ m (solid curve), 580 μ m (dashed curve), and 970 μ m (dashed-dotted curve) cavity lengths. Threshold for the 580 μ m laser is 5.4 mA or 231   A / cm 2 assuming 4 μ m lateral width. (b) I V curves for the same lasers. (c) Spectra at currents 2.5 × (solid curve), 5 × (dashed curve), and 8 × (dashed-dotted curve) above threshold.

Fig. 3
Fig. 3

(a) Computed NF profile of the PBG mode. (b) Measured NF profile just above threshold, (c) at 50 × threshold. (d) Computed planar FF and (e) measured planar FF image at about 5 mm from the facet.

Fig. 4
Fig. 4

Modal propagation gain/loss versus current density, calculated from Fourier transform analysis of subthreshold spectra. The data (points) are fit (line) to the logarithmic equation in the text. (Inset) Subthreshold spectrum of a 580 μ m BRW laser operating at 172   A / cm 2 .

Metrics