Abstract

We theoretically demonstrate control of the plasmalike effective response of a metamaterial composed of aligned metallic nanorods when the electric field of the incident radiation is parallel to the nanorods. By embedding this metamaterial in a coherent atomic/molecular medium, for example, silver nanorod arrays submerged in sodium vapor, we can make the metamaterial transmittive in the forbidden frequency region below its plasma frequency. This phenomenon is enabled by having Lorentz absorbers or other coherent processes in the background medium, which provide a large positive dielectric permittivity in the vicinity of the resonance, thereby rendering the effective permittivity positive. In particular, processes such as electromagnetically induced transparency are shown to provide additional control to switch and tune the new transmission bands.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).
  2. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  4. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  5. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008).
    [CrossRef] [PubMed]
  6. S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
    [CrossRef]
  7. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  8. J. Han, A. Lakhtakia, and C.-W. Qiu, Opt. Express 16, 14390 (2008).
    [CrossRef] [PubMed]
  9. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007).
    [CrossRef] [PubMed]
  10. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
    [CrossRef]
  11. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef] [PubMed]
  12. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
    [CrossRef]
  13. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
    [CrossRef] [PubMed]
  14. M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
    [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef] [PubMed]
  16. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
    [CrossRef]
  17. Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
    [CrossRef]
  18. A. I. Rahachou and I. V. Zozoulenko, J. Opt. A 9, 265 (2007).
    [CrossRef]
  19. A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
    [CrossRef]
  20. T. G. Mackay and A. Lakhtakia, Opt. Commun. 282, 2470 (2009).
    [CrossRef]
  21. G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999).
    [CrossRef]
  22. S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996).
    [CrossRef] [PubMed]
  23. J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).
    [CrossRef] [PubMed]
  24. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  25. G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
    [CrossRef]

2009 (1)

T. G. Mackay and A. Lakhtakia, Opt. Commun. 282, 2470 (2009).
[CrossRef]

2008 (4)

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008).
[CrossRef] [PubMed]

J. Han, A. Lakhtakia, and C.-W. Qiu, Opt. Express 16, 14390 (2008).
[CrossRef] [PubMed]

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

2007 (2)

2006 (3)

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

2004 (1)

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

2002 (1)

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

2000 (3)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

1999 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999).
[CrossRef]

1996 (2)

S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

1992 (1)

J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).
[CrossRef] [PubMed]

1991 (2)

M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

1978 (1)

G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999).
[CrossRef]

Agren, H.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

Bershader, D.

G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
[CrossRef]

Blendstrup, G.

G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Boyd, Robert W.

G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999).
[CrossRef]

Bratkovsky, A.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Brehm, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Chakrabarti, S.

Choi, J.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Drachev, V. P.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

Fu, Y.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Gösele, U.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Grzegorczyk, T. M.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).

Han, J.

Harris, S. E.

S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Hofmeister, H.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Holmstrom, P.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Khoo, I.-C.

Kildishev, A. V.

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007).
[CrossRef] [PubMed]

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

Klar, T. A.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Kwon, D.-H.

Lakhtakia, A.

Langhoff, P. W.

G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
[CrossRef]

Lee, Mark

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Li, Z.

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, Opt. Commun. 282, 2470 (2009).
[CrossRef]

Mackinnon, A.

J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).
[CrossRef] [PubMed]

McPeake, D.

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Nielsch, K.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

O'Brien, S.

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Padilla, Willie J.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
[CrossRef] [PubMed]

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).
[CrossRef] [PubMed]

Ponizovskaya, E.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Qiu, C.-W.

Rahachou, A. I.

A. I. Rahachou and I. V. Zozoulenko, J. Opt. A 9, 265 (2007).
[CrossRef]

Ramakrishna, S. A.

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008).
[CrossRef] [PubMed]

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).

Sauer, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Schneider, S.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Schultz, S.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
[CrossRef] [PubMed]

Shalaev, V. M.

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007).
[CrossRef] [PubMed]

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
[CrossRef] [PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Thylen, L.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Vier, D. C.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Wanare, H.

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Wang, S.-Y.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

Wehrspohn, R. B.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

Werner, D. H.

Yang, Y.

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Zhang, Z.

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

Zhou, Q.

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

Zozoulenko, I. V.

A. I. Rahachou and I. V. Zozoulenko, J. Opt. A 9, 265 (2007).
[CrossRef]

AIAA J. (1)

G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

J. Appl. Phys. (1)

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
[CrossRef]

J. Opt. A (1)

A. I. Rahachou and I. V. Zozoulenko, J. Opt. A 9, 265 (2007).
[CrossRef]

J. Phys. D (1)

Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008).
[CrossRef]

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. G. Mackay and A. Lakhtakia, Opt. Commun. 282, 2470 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

Phys. Rev. Lett. (8)

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996).
[CrossRef] [PubMed]

J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Other (1)

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic picture of an aligned nanorod array with subwavelength periodicity and grown vertically on a substrate that behaves as a plasma for linearly polarized radiation with the electric field along the wire axes.

Fig. 2
Fig. 2

Top panels: (a) band structure of the silver nanorod metamaterial and (b) transmittance from an array containing four layers of nanorods, for various filling fractions of silver calculated using the transfer-matrix method. The Re ( ε eff ) and transmittance calculated for a homogeneous slab of effective medium as given by Eq. (1) are also shown by thin lines in (a) and (b), respectively. Bottom panels: electric fields (in arbitrary units) within the rod array for a plane wave incident from the bottom. Left, ω < ω p ; middle, ω = ω p ; right, ω > ω p . The radiation does not penetrate for frequencies below the plasma frequency ( ω p = 650 THz ) , while it propagates across for higher frequencies.

Fig. 3
Fig. 3

(a) Band structure for s-polarized light with the metamaterial immersed in atomic sodium showing the new transmission band that develops below ω p , for the D 1 and D 2 lines in the presence (solid) and in the absence (dotted) of an appropriate control field ( Ω c = 10 γ ) . (b) Transmittance corresponding to the band structure in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε eff = f ε m + ( 1 f ) ε b .

Metrics