Abstract

A great challenge in microfluidics is the precise control of laser radiation forces acting on single particles or cells, while allowing monitoring of their optical and chemical properties. We show that, in the liquid-filled hollow core of a single-mode photonic crystal fiber, a micrometer-sized particle can be held stably against a fluidic counterflow using radiation pressure and can be moved to and fro (over tens of centimeters) by ramping the laser power up and down. Accurate studies of the microfluidic drag forces become possible, because the particle is trapped in the center of the single guided optical mode, resulting in highly reproducible radiation forces. The counterflowing liquid can be loaded with sequences of chemicals in precisely controlled concentrations and doses, making possible studies of single particles, vesicles, or cells.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  2. D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
    [CrossRef] [PubMed]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
    [CrossRef]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
    [CrossRef] [PubMed]
  5. S. Kawata and T. Sugiura, Opt. Lett. 17, 772 (1992).
    [CrossRef] [PubMed]
  6. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, Opt. Express 13, 6956 (2005).
    [CrossRef] [PubMed]
  7. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
    [CrossRef] [PubMed]
  8. F. Benabid, J. C. Knight, and P. St. J. Russell, Opt. Express 10, 1195 (2002).
    [PubMed]
  9. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  10. S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
    [CrossRef]
  11. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, Opt. Express 12, 69 (2004).
    [CrossRef] [PubMed]
  12. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, Opt. Express 14, 3000 (2006).
    [CrossRef] [PubMed]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  14. N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
    [CrossRef]
  15. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]
  16. P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
    [CrossRef]

2009

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

2008

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

2007

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

2006

2005

2004

2003

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

2002

1992

1986

Al Quddus, N.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Antonopoulos, G.

Ashkin, A.

Benabid, F.

Bhattacharjee, S.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bjorkholm, J. E.

Chatelain, F.

Chu, S.

Colas, G.

Cronin-Golomb, M.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

Dérouard, J.

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Domachuk, P.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Dziedzic, J. M.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Fedeli, J. M.

Fuchs, A.

Gaugiran, S.

Gétin, S.

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Hedley, T. D.

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Knight, J. C.

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Mandal, S.

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Moussa, W. A.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Omenetto, F. G.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

Pottage, J. M.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Russell, P. St. J.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Sugiura, T.

Wolchover, N.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, Appl. Phys. Lett. 94, 141101 (2009).
[CrossRef]

Biophys. J.

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of the HC-PCF cross section with interhole spacing of Λ = 4.7 ± 0.1 μ m and core diameter of 17.1 ± 0.3 μ m ; (b) detailed view of the core structure; (c) mode profile measured at the output of an 11 cm D 2 O -filled fiber at 1064 nm [same scale as (b)]. (d) Arrangement for loading and launching particles into the fiber and monitoring them while inside; the fiber end face is immersed in a drop of liquid at the vertex of two glass slides. (e) Pressure cell at output end of fiber.

Fig. 2
Fig. 2

Loading, launching, and guidance of a particle (diameter of 6 μ m ). (a)–(c) Tweezering a particle up to the entrance to the core; (d) bottom view (CCD2) of the particle held at the entrance to the core by optical forces balanced against the counterflow of liquid from the core. The particle is optically trapped slightly to one side of the core center. In this position the particle could be seen to revolve under the action of imbalanced viscous forces; (e)–(h) side-scattering patterns imaged through the cladding of the fiber, photographed at 1 s intervals.

Fig. 3
Fig. 3

Experimental data for the limiting cases of stationary fluid and stationary particle. (a) Particle velocity V p versus launched optical power P opt for three particle sizes (zero liquid flow). The relationship is approximately linear. At low powers the transverse trapping strength is weak, causing gravity to pull the particle closer to the wall, away from the center of the optical mode and thus lowering V p . (b) Optical power needed to hold a silica sphere (for five different radii) stationary against the fluid flow driven by the pressure gradient d P H / d z . The right-hand axis shows the velocity V max in the center of the flow. Once again the relationship is linear. The initial switch-on power, upon which the particle is lifted into the liquid by the light, could be used to study adhesion forces between particle and core wall.

Tables (1)

Tables Icon

Table 1 Comparison of Theory and Experiment a

Metrics