Abstract

Efficient sum-frequency generation in epitaxial GaAsAlGaAs waveguides is reported. Phase matching is achieved for type II nonlinear interaction using Bragg reflection waveguides. Continuous-wave signal and pump in 1550nm wavelength window were used for upconversion of photons to the 775nm region. For a pump and signal with powers of 0.69mW and 0.35mW, sum-frequency power of 35nW was measured. The normalized conversion efficiency was estimated to be 298%W1cm2 in a device with a length of 2.2mm. The bandwidth of the process was found to exceed 60nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
    [CrossRef]
  3. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, Opt. Lett. 30, 1725 (2005).
    [CrossRef] [PubMed]
  4. M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
    [CrossRef]
  5. B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
    [CrossRef]
  6. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  7. P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
    [CrossRef]
  8. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
    [CrossRef]
  9. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  10. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, Opt. Lett. 29, 1518 (2004).
    [CrossRef] [PubMed]
  11. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and M. S. Helmy, Opt. Lett. 34, 2000 (2009).
    [CrossRef] [PubMed]

2009 (2)

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and M. S. Helmy, Opt. Lett. 34, 2000 (2009).
[CrossRef] [PubMed]

2008 (1)

B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

2007 (1)

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

2005 (1)

2004 (1)

1998 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

1997 (1)

1993 (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

1962 (1)

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Abolghasem, P.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and M. S. Helmy, Opt. Lett. 34, 2000 (2009).
[CrossRef] [PubMed]

B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Amstrong, J. A.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Arjmand, A.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

Beniya, K.

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Bijlani, B.

B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Bijlani, B. J.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

Bloembergen, N.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Diamanti, E.

Ducuing, J.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Fejer, M. M.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Fujimura, M.

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

Fukatsu, S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Han, J.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

Helmy, A. S.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Helmy, M. S.

Hendrych, M.

Ito, R.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
[CrossRef]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Kano, S. S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Kitamoto, A.

Kondo, T.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
[CrossRef]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Kumata, K.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Kurz, J. R.

Langrock, C.

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Ohashi, M.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Okabe, H.

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

Pershan, P. S.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Roussev, R. V.

Shi, X.

Shiraki, Y.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

Shirane, M.

Shoji, I.

Suhara, T.

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Torres, J. P.

Yamamoto, Y.

Appl. Phys. Lett. (1)

B. Bijlani, P. Abolghasem, and A. S. Helmy, Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009).
[CrossRef]

J. Appl. Phys. (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, J. Appl. Phys. 74, 596 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Fujimura, H. Okabe, K. Beniya, and T. Suhara, Jpn. J. Appl. Phys. 46, 5868 (2007).
[CrossRef]

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Index profile and (b) SEM of the characterized waveguide [7]. Simulated intensity profiles of (c) TE-polarized signal, (d) TM-polarized pump, and (e) TE-polarized SF. Both pump and signal are TIR modes, while the SF is a Bragg mode.

Fig. 2
Fig. 2

SF power as a function of signal wavelength obtained (a) experimentally and (b) numerically with α i = 5.0 cm 1 . The simulated curves are normalized to the measured peak SF power to facilitate the comparison between the two models.

Fig. 3
Fig. 3

Quantum efficiency as a function of pump power. Squares are the measured data, while the dashed line is the linear fit.

Fig. 4
Fig. 4

SF power as a function of pump wavelength. Squares are the measured data while the solid-line is a smoothed fit to remove cavity resonance effect. The pump wavelength range limited the tunability on the long wavelength side.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P i = P p P s ν κ 2 L 2 exp [ ( α p + α s + α i ) ( L 2 ) ] × sin 2 ( Δ k L 2 ) + sinh 2 [ ( α p + α s α i ) L 4 ] ( Δ k L 2 ) 2 + [ ( α p + α s α i ) L 4 ] 2 ,
κ = ( 8 π 2 d eff 2 n p n s n i c ϵ 0 λ i 2 ) 1 2 ,

Metrics