Abstract

We have experimentally demonstrated that the resolution of a commercial two-photon microscope is improved using a TM01 laser beam. With a water immersion objective having a 1.2 NA, the measured point- spread function has an area of 0.15λ2. We used a plane interface between dielectrics instead of an annular aperture to increase the relative contribution of the longitudinal field of the TM01 laser beam. The results are in agreement with the vectorial diffraction theory established by Richards and Wolf [Proc. R. Soc. Lond. A 253, 358 (1959) ]. The TM01 laser beam was produced with a quadrant of half-wave plates. We have also used the same mode converter to generate a TE01 laser beam with a zero at the beam center.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
    [CrossRef] [PubMed]
  3. L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  4. J. Kim, D. C. Kim, and S. H. Back, Microsc. Res. Tech. 72, 441 (2009).
    [CrossRef] [PubMed]
  5. J. Stadler, C. Stanciu, C. Stupperich, and J. A. Meixner, Opt. Lett. 33, 681 (2008).
    [CrossRef] [PubMed]
  6. E. Y. S. Yew and C. R. J. Sheppard, Opt. Commun. 275, 453 (2007).
    [CrossRef]
  7. F. Lu, W. Zheng, and Z. Huang, Opt. Lett. 34, 1870 (2009).
    [CrossRef] [PubMed]
  8. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Opt. Lett. 34, 971 (2009).
    [CrossRef] [PubMed]
  9. A. April, Opt. Lett. 33, 1563 (2008).
    [CrossRef] [PubMed]
  10. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
  11. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  12. D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
    [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  14. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
    [CrossRef]
  15. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  16. A. Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications, and Advantages (Wiley-Liss, 2002).
  17. V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef] [PubMed]

2009 (3)

2008 (2)

2007 (1)

E. Y. S. Yew and C. R. J. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

2005 (1)

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2001 (3)

D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

1992 (1)

E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

April, A.

Back, S. H.

J. Kim, D. C. Kim, and S. H. Back, Microsc. Res. Tech. 72, 441 (2009).
[CrossRef] [PubMed]

Beverluis, M. R.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Biss, D. P.

Bochove, E. J.

E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
[CrossRef] [PubMed]

Brown, T. G.

D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
[CrossRef] [PubMed]

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Bu, J.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Diaspro, A.

A. Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications, and Advantages (Wiley-Liss, 2002).

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Gao, B. Z.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Hell, S. W.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Huang, Z.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Kim, D. C.

J. Kim, D. C. Kim, and S. H. Back, Microsc. Res. Tech. 72, 441 (2009).
[CrossRef] [PubMed]

Kim, J.

J. Kim, D. C. Kim, and S. H. Back, Microsc. Res. Tech. 72, 441 (2009).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Lu, F.

Meixner, J. A.

Moh, K. J.

Moore, G. T.

E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Scully, M. O.

E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
[CrossRef] [PubMed]

Sheppard, C. R. J.

E. Y. S. Yew and C. R. J. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Stadler, J.

Stanciu, C.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Stupperich, C.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Yew, E. Y. S.

E. Y. S. Yew and C. R. J. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Yuan, X. -C.

Zheng, W.

Zhu, S. W.

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Microsc. Res. Tech. (1)

J. Kim, D. C. Kim, and S. H. Back, Microsc. Res. Tech. 72, 441 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Y. S. Yew and C. R. J. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

E. J. Bochove, G. T. Moore, and M. O. Scully, Phys. Rev. A 46, 6640 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

A. Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications, and Advantages (Wiley-Liss, 2002).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental (left) and calculated (right) PSFs at the glass/mounting medium interface: (a) vertically polarized Gaussian beam; (b) TM 01 laser beam. Comparison with PSFs at the glass/air interface: (c) horizontally polarized Gaussian beam; (d) TM 01 laser beam. The scale bar is 500 nm.

Fig. 2
Fig. 2

Experimental and theoretical intensity profiles at (a), (b) the glass/mounting medium interface; (c), (d) the glass/air interface. In (a) and (c) a linearly polarized Gaussian beam is used; a TM 01 laser beam is used in (b) and (d). The outer (red online) curves in (a) and (c) are obtained along the direction of beam polarization, and the inner (green online) curves are obtained along the perpendicular direction. Dotted curves, experimental curves; solid curves, calculated data.

Fig. 3
Fig. 3

TE 01 laser beam at the glass/air interface: (a) PSF and (b) intensity profiles. The scale bar is 500 nm. Dotted curve, experimental curve; solid curve, calculated data.

Tables (1)

Tables Icon

Table 1 Comparison of the Measured and Calculated PSF Areas Measured at Half-Maximum for the TM 01 Laser Beam and the Linearly Polarized Gaussian Beam ( TEM 00 ) , with the Two Preparations: λ = λ exc / n glass = 533   nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E x glass = E x air ,     E y glass = E y air , ε glass E z glass = ε air E z air .

Metrics