Abstract

We generate ultrabroadband pulses at 800nm from an optical parametric amplifier (OPA) pumped by the second harmonic of a Ti:sapphire system and working at degeneracy. The OPA is seeded by a white-light continuum generated from a near-IR OPA pumped by the same laser. Nearly transform-limited <7 fs pulses, fully characterized in amplitude and phase, are obtained with a chirped mirror compressor. The system fills the gap around 800nm for broadband continuum seeded OPAs pumped by Ti:sapphire-based sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications, Vol. 95 of Topics in Applied Physics (Springer, 2004).
  2. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  3. A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef] [PubMed]
  4. T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  5. G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
    [CrossRef]
  6. A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
    [CrossRef]
  7. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, Opt. Lett. 32, 2396 (2007).
    [CrossRef] [PubMed]
  8. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Express 17, 12510 (2009).
    [CrossRef] [PubMed]
  9. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Lett. 33, 741 (2008).
    [CrossRef] [PubMed]
  10. J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, Opt. Express 13, 7386 (2005).
    [CrossRef] [PubMed]
  11. C. Aguergaray, O. Schmidt, J. Rothhardt, D. Schimpf, D. Descamps, S. Petit, J. Limpert, and E. Cormier, Opt. Express 17, 5153 (2009).
    [CrossRef] [PubMed]
  12. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).
  13. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  14. C. Manzoni, D. Polli, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, Appl. Phys. Lett. 90, 171111 (2007).
    [CrossRef]
  15. G. Cirmi, C. Manzoni, D. Brida, S. De Silvestri, and G. Cerullo, J. Opt. Soc. Am. B 25, B62 (2008).
    [CrossRef]
  16. O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, Opt. Lett. 34, 118 (2009).
    [CrossRef] [PubMed]
  17. N. Nishizawa, H. Mitsuzawa, J. Takayanagi, and K. Sumimura, J. Opt. Soc. Am. B 26, 426 (2009).
    [CrossRef]
  18. J. Dudley and S. Coen, Opt. Express 12, 2423 (2004).
    [CrossRef] [PubMed]
  19. T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).
  20. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, Opt. Express 16, 14341 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, Opt. Lett. 32, 2396 (2007).
[CrossRef] [PubMed]

C. Manzoni, D. Polli, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, Appl. Phys. Lett. 90, 171111 (2007).
[CrossRef]

2005

2004

2003

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

2002

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

2000

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

1998

1997

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

Adachi, S.

Aguergaray, C.

Ališauskas, S.

Angelow, G.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Baltuška, A.

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Bonora, S.

Brida, D.

Cerullo, G.

Cirmi, G.

Coen, S.

Cormier, E.

Danielius, R.

De Silvestri, S.

Descamps, D.

Dombi, P.

Dudley, J.

Forget, N.

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Giniunas, L.

Hamm, P.

Ippen, E. P.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Ishii, N.

Itatani, J.

Kaindl, R. A.

Kanai, T.

Kärtner, F. X.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications, Vol. 95 of Topics in Applied Physics (Springer, 2004).

Kim, J.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
[CrossRef]

Kobayashi, Y.

Kosuge, A.

Kuzucu, O.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Limpert, J.

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Manek-Hönninger, I.

Manzoni, C.

Marangoni, M.

Mitsuzawa, H.

Montant, S.

Mücke, O. D.

Nishizawa, N.

Nisoli, M.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Petit, S.

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

Pocius, J.

Polli, D.

C. Manzoni, D. Polli, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, Appl. Phys. Lett. 90, 171111 (2007).
[CrossRef]

Pugžlys, A.

Reimann, K.

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

Rothhardt, J.

Sakane, I.

Salin, F.

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Scheuer, V.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Schibli, T. R.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

Schimpf, D.

Schmidt, O.

Shirakawa, A.

Sidorov, D.

Smilgevicius, V.

Spörlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Sumimura, K.

Takayanagi, J.

Torizuka, K.

Villoresi, P.

Watanabe, S.

Weiner, A. M.

Wilhelm, T.

Woerner, M.

Wurm, M.

Yoshitomi, D.

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Appl. Phys. B

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Appl. Phys. Lett.

C. Manzoni, D. Polli, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, Appl. Phys. Lett. 90, 171111 (2007).
[CrossRef]

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 4, 990 (2003).

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Other

F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications, Vol. 95 of Topics in Applied Physics (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for the generation of few-cycle pulses at 800 nm : BS, beam splitters; VA, variable attenuator; WLC, white-light continuum generation with either signal or idler from IR OPA; DCM, double-chirped mirror; FS, fused-silica glass prisms; BBO 1: SH stage; BBO 2: OPA at 800 nm . (b) Setup for the two-stage IR OPA used for WLC generation; LPF, long-pass filter; BBO 3 and BBO 4: near-IR OPA stages.

Fig. 2
Fig. 2

(a) Dotted curve (logarithmic scale), WLC generated by the signal of the near-IR OPA single and seeding the 800 nm OPA. Dashed curve, calculated gain bandwidth curve. Solid curve, amplified spectrum. (b) Same as (a), starting from the idler of the near-IR OPA.

Fig. 3
Fig. 3

GD composition of the idler-derived output. GD 1 (dashed curve) is the GD before compression, includes 1 mm BBO, 550 μ m YAG, and 1.5 m air. GD 2 (red dashed-dotted curve) is the GD for the compressor, includes the GD from the chirped mirror pair. GD 1 + GD 2 (black line) is the total GD after compression.

Fig. 4
Fig. 4

(a) 128 × 128  pixels FROG trace for the compressed, idler-derived output. (b) Reconstructed FROG trace. (c) Intensity profile and phase versus time retrieved from FROG. (d) Reconstructed intensity profile and phase versus wavelength retrieved from FROG.

Metrics