Abstract

A dielectric structure with effective permittivity and permeability close to 1 operating for propagative waves at optical wavelengths is proposed. This structure is a two-dimensional photonic crystal with refractive index 1, coated by appropriate antireflection gratings. Numerical simulations involving a flat lens made of this optimized crystal illustrate the improvements that antireflection gratings can bring. In particular, following Veselago’s proposition, this lens “can focus at a point the radiation from a point source” with negligible reflection losses. The proposed design takes into account the fabrication requirements and can be used for optical devices integrated in planar waveguides.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription