Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal-lens study of photochemical reaction kinetics

Not Accessible

Your library or personal account may give you access

Abstract

We consider the time dependence of the absorption coefficient due to the photoinduced chemical reaction (PCR) and species diffusion to calculate the temperature rise in the thermal-lens (TL) effect. The TL signal at the detector plane is also calculated. This theoretical approach removes the restriction that the PCR time constant is much greater than the characteristic TL time constant, which was assumed in a previously published model. Hydrocarbon fuel and aqueous Cr(VI) samples are investigated, and quantitative experimental results for the thermal, optical, and PCR properties are obtained. While similar results were obtained for the Cr(VI) solution using the previous and present models, the relative difference between the PCR time constants extracted from the same experimental data for a hydrocarbon fuel sample is found to be more than 220%. This demonstrates the significant difference of the two models.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Soret effect and photochemical reaction in liquids with laser-induced local heating

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge
Opt. Express 19(5) 4047-4058 (2011)

Current-induced thermal-lens spectrometry

Pavel A. Gorkin, Mikhail A. Proskurnin, Boris K. Zuev, Andrei A. Zhirkov, and Vladimir V. Yagov
Opt. Lett. 34(5) 680-682 (2009)

Ultrasensitive thermal lens spectroscopy of water

Renato Antonio Cruz, Arístides Marcano, Carlos Jacinto, and Tomaz Catunda
Opt. Lett. 34(12) 1882-1884 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.