Abstract

Elastomeric molding technology is adopted to fabricate polydimethilsiloxane (PDMS)-based solid microlenses, as they can have different focal lengths and achieve different lens types (such as concave and convex) using the same mold structure. The only parameter that needs to be controlled is the pressure applied during the molding process. These PDMS lenses can also be transformed from the original spherical ones into microlenses having elliptic surface profiles simply by stretching their substrates in one direction. This provides the process with additional tunability of astigmatism.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Borrelli, Micro-optics Technology (Marcel Dekker, 2005).
  2. H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, Opt. Express 17, 4782 (2009).
    [Crossref] [PubMed]
  3. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, Opt. Express 11, 2370 (2003).
    [Crossref] [PubMed]
  4. J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
    [Crossref]
  5. S. H. Cho, F. S. Tsai, W. Qiao, N. H. Kim, and Y. H. Lo, Opt. Lett. 34, 605 (2009).
    [Crossref] [PubMed]
  6. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
    [Crossref]

2009 (2)

2008 (1)

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

2004 (1)

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

2003 (1)

Borrelli, N. F.

N. F. Borrelli, Micro-optics Technology (Marcel Dekker, 2005).

Chau, F. S.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, Opt. Express 17, 4782 (2009).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

Cho, S. H.

Chronis, N.

Folch, A.

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

Hoffman, J. M.

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

Hsu, C. H.

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

Jeong, K. H.

Kim, N. H.

Lee, F. W.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, Opt. Express 17, 4782 (2009).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

Lee, L. P.

Leung, H. M.

Liu, G. L.

Lo, Y. H.

Qiao, W.

Shao, J.

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

Tsai, F. S.

Wang, S. H.

Yu, H. B.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, Opt. Express 17, 4782 (2009).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

Zhou, G. Y.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, Opt. Express 17, 4782 (2009).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

Adv. Mater. (Weinheim, Ger.) (1)

J. M. Hoffman, J. Shao, C. H. Hsu, and A. Folch, Adv. Mater. (Weinheim, Ger.) 16, 2201 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, IEEE Photonics Technol. Lett. 20, 1624 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

N. F. Borrelli, Micro-optics Technology (Marcel Dekker, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process flow.

Fig. 2
Fig. 2

Measured focal length as a function of the applied pressure for both types of microlens.

Fig. 3
Fig. 3

Cross-sectional contour of microlens obtained with ZYGO profilometer: (a) concave microlens, (b) convex microlens.

Fig. 4
Fig. 4

Microlens stretching experiment. Cross-sectional contours of microlens under stretching (a) along the stretching direction and (b) orthogonal to the stretching direction. (c) Schematic of optical setup used for characterize the microlens performance under stretching.

Fig. 5
Fig. 5

Spot patterns captured at the focus of microlens. (a) As-fabricated spherical microlens; (b) and (c) the shorter and longer foci of the elliptical microlens after stretching, respectively.

Metrics