Phase microscopy for high-dynamic-range quantitative phase-contrast imaging of a transparent phase object was demonstrated. Using a common path Fourier domain optical coherence tomography system, this technique is capable of displacement measurement with a sensitivity of 34pm. The limitation of 2π ambiguity restriction was overcome by the use of a phase retrieval approach performed in spectral domain. Two-dimensional quantitative phase imaging of human neonatal dermal keratinocyte cells was demonstrated to evaluate the performance of the system for cell imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. A. Dubois, L. Vabre, and A. C. Boccara, Opt. Lett. 26, 1873 (2001).
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [Crossref] [PubMed]
  3. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2503 (2004).
    [Crossref] [PubMed]
  4. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, Opt. Lett. 30, 1165 (2005).
    [Crossref] [PubMed]
  5. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 26, 1271 (2001).
  6. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [Crossref] [PubMed]
  7. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, Opt. Lett. 30, 2131 (2005).
    [Crossref] [PubMed]
  8. T. J. Flynn, J. Opt. Soc. Am. A 14, 2692 (1997).
  9. D. Parshall and M. K. Kim, Appl. Opt. 45, 451 (2006).
    [Crossref] [PubMed]
  10. H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, Opt. Express 17, 5039 (2009).
    [Crossref] [PubMed]

2009 (1)

2006 (1)

2005 (4)

2004 (1)

2001 (2)

1997 (1)

Akkin, T.

Badizadegan, K.

Boccara, A. C.

Cense, B.

Choma, M. A.

Colomb, T.

Creazzo, T. L.

Cuche, E.

Dasari, R. R.

de Boer, J. F.

Deflores, L. P.

Depeursinge, C.

Dubois, A.

Ellerbee, A. K.

Emery, Y.

Feld, M. S.

Flynn, T. J.

Hahn, M. S.

Hendargo, H. C.

Ikeda, T.

Iwai, H.

Izatt, J. A.

Joo, C.

Kim, M. K.

Magistretti, P. J.

Marquet, P.

Park, B. H.

Parshall, D.

Popescu, G.

Rappaz, B.

Shepherd, N.

Vabre, L.

Vaughan, J. C.

Wax, A.

Yang, C.

Zhao, M.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (5)

Fig. 1
Fig. 1

Schematic of the spectral domain phase microscopy system. SLD, superluminescent diode; L, lens; OB, 20× objective lens; G, transmission grating with 1200  groves mm ; LG, lens group with focusing length of 150 mm .

Fig. 2
Fig. 2

Measured phase in wavenumber space with the top surface of a coverslip as the sample. (a) Wrapped phase, (b) unwrapped phase.

Fig. 3
Fig. 3

Probability distribution of measured phase variations with a microscope coverslip as the sample.

Fig. 4
Fig. 4

Measured OPD of patterns on a glass slide. (a) Cross-sectional profile of the OPD in one direction. Lower red curve, OPD calculated with the wrapped phase; upper blue curve, OPD calculated with the phase unwrapped in wavenumber space. (b) Discontinuously changed phase shift. (c) 3D phase image of the patterns.

Fig. 5
Fig. 5

Image of human neonatal dermal keratinocyte cells.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = S ( k ) R R + S ( k ) R S + 2 S ( k ) R R R S cos ( 2 k Δ d + θ ) ,
I ̃ ( k ) = 2 S ( k ) R R R S exp [ j ( 2 k Δ d + θ ) ] .
φ ( k ) = 2 k Δ d + θ .
φ ( k i ) = 2 k i Δ d + θ ( i = 0 2047 ) .
Δ d = φ ( k i ) 2 k i + π k i [ floor ( φ 2 π ) ] ,
Δ ϕ 2 1 SNR .