Abstract

A theoretical model for quantifying the effects of the sampling aliasing on the viewing resolution of the reconstructed integral image is proposed. Specifically, the “squeezed” modulation transfer function (MTF) concept is introduced to characterize the quality degradation of an integral image due to the sampling effect. Then, for the display part of an integral imaging system, an analytical model for the squeezed MTF is derived by defining a spurious response factor related to the sampling aliasing of the display microlens array. Finally, we analyze the quantitative relationships of the viewing resolution of an integral image with the sampling step size determined by the pitch of a microlens array, and the distance from the displayed microlens array to the display device based on the simulation results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, J. Opt. Soc. Am. A , 15, 2059 (1998).
    [CrossRef]
  2. L. E. Helseth, J. Opt. Soc. Am. A 23, 816 (2006).
    [CrossRef]
  3. F. Okano, J. Arai, and M. Kawakita, Opt. Lett. 32, 364 (2007).
    [CrossRef] [PubMed]
  4. G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (JCD Publishing and SPIE Optical Engineering Press, 2003), pp. 236-246.
  5. R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
    [CrossRef]
  6. G. C. Holst, Electro-Optical Imaging System Performance, 2nd ed. (JCD Publishing and SPIE Optical Engineering Press, 2000), pp. 93-123.

2007 (1)

2006 (1)

2003 (1)

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

1998 (1)

Arai, J.

Driggers, R. G.

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

Helseth, L. E.

Hodgkin, V. A.

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (JCD Publishing and SPIE Optical Engineering Press, 2003), pp. 236-246.

G. C. Holst, Electro-Optical Imaging System Performance, 2nd ed. (JCD Publishing and SPIE Optical Engineering Press, 2000), pp. 93-123.

Hoshino, H.

Isono, H.

Kawakita, M.

Okano, F.

Shea, P. O.

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

Vollmerhausen, R.

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

Yuyama, I.

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Proc. SPIE (1)

R. G. Driggers, V. A. Hodgkin, R. Vollmerhausen, P. O. Shea, Proc. SPIE 5076, 179 (2003).
[CrossRef]

Other (2)

G. C. Holst, Electro-Optical Imaging System Performance, 2nd ed. (JCD Publishing and SPIE Optical Engineering Press, 2000), pp. 93-123.

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (JCD Publishing and SPIE Optical Engineering Press, 2003), pp. 236-246.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Display part of an integral imaging setup.

Fig. 2
Fig. 2

Squeezed MTF for two different fill factors (the pixel pitch of display device being 20 μ m ).

Fig. 3
Fig. 3

Relationship of the viewing resolution with the sampling distance.

Fig. 4
Fig. 4

Relationship of the viewing resolution with the gap from the microlens array to display panel.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f max = min ( f i max , f nyq ) = min ( α i max z i L z i , f nyq ) ,
f nyq = L 2 p ,
MTF d ( f ) = MTF L d ( f ) MTF d d ( f ) ,
f = α i z i L z i ,
MTF d ( f ) = MTF L d ( f ) MTF d d ( f ) m = 0 m = δ ( m f s ± f ) ,
MTF total ( f ) = [ MTF L d ( f ) MTF d d ( f ) m = 0 m = δ ( m f s ± f ) ] MTF eye ( f ) ,
MTF total ( f ) = MTF L d ( f ) MTF d d ( f ) MTF eye ( f ) + MTF eye ( f ) m = 1 m = MTF L d ( m f s ± f ) MTF d d ( m f s ± f s ) ,
S R out-of-band = f nyq MTF eye ( f ) m = 1 MTF d d ( m f s ± f ) MTF L d ( m f s ± f ) d f 0 MTF eye ( f ) MTF d d ( f ) MTF L d ( f ) d f .
f squeezed ( 1 a S R out-of-band ) f ,
MTF ala sin g ( f squeezed ) = MTF base ( ( 1 a S R out-of-band ) f ) ,

Metrics