Abstract

We propose an efficient method to achromatically transform a circularly polarized beam to a radially polarized beam in the visible range using segmented subwavelength metal wire gratings. We present a theoretical analysis of the relationship between the polarization purity of the transmitted beams and the number of segments. To verify our analysis, we fabricate a device composed of four quadrant sectors of subwavelength metal wire gratings and measure the transformation properties of the device at visible wavelengths of 488nm, 532nm, and 633nm, which show a good agreement with theoretical results and the broadband achromatic property of the generation method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  2. Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
    [CrossRef]
  3. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007).
    [CrossRef] [PubMed]
  4. S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
    [CrossRef]
  5. D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics (Pergamon, 1999).
  7. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  8. L. F. Li, J. Chandezon, G. Granet, and J.-P. Plumey, Appl. Opt. 38, 304 (1999).
    [CrossRef]

2007

2006

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

2005

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

2001

Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
[CrossRef]

1999

1996

1986

Bomzon, Z.

Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1999).

Chandezon, J.

Deng, Y.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Gaylord, T. K.

Granet, G.

Hasman, E.

Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
[CrossRef]

Jackel, S.

Jiao, X.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Kleiner, V.

Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Li, L. F.

Liu, W.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Lumer, Y.

Machavariani, G.

Meir, A.

Ming, C.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Ming, H.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Moharam, M. G.

Moshe, I.

Plumey, J.-P.

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Schadt, M.

Stalder, M.

Wang, P.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1999).

Yuan, G.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Zhang, D.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Zhang, L.

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

D. Zhang, P. Wang, X. Jiao, C. Ming, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, Appl. Phys. B 85, 139 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Bomzon, V. Kleiner, and E. Hasman, Appl. Phys. Lett. 79, 1587 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic device structure composed of (a) segmented SMWGs, where the arrows schematically show directions of the grating vector of SMWGs and n is the total number of segments, and (b) the calculated results of the relationship between polarization purity of transmitted beams and the number of segments.

Fig. 2
Fig. 2

Photo of (a) manufactured device and (b) SEM of a cross section of grating stripes.

Fig. 3
Fig. 3

(a) Calculated and measured ERs and (b) transmission efficiencies ( τ TM ) of transmitted TM polarized beams of SMWGs.

Fig. 4
Fig. 4

Measured intensity distributions with spatial filter after passing the beam through an analyzing polarizer (a) vertically, (b) horizontally, (c) 45°, and (d) through a quarter-wave plate oriented horizontally and a polarizer oriented at 45°.

Fig. 5
Fig. 5

Measured local polarization results at 633 nm , the distribution of (a) the absolute value of the ellipticity angle χ and (b) the deviation of the azimuthal angle ψ from the direction of local grating vector in each transverse point, measured in degrees.

Metrics