Abstract

Epitaxial films of neodymium-doped sapphire have been grown by molecular beam epitaxy on R-, A-, and M-plane sapphire substrates. The emission spectrum features sharp lines consistent with single-site doping of the Nd3+ ion into the host crystal. This material is believed to be a nonequilibrium phase, inaccessible by conventional high-temperature growth methods. Neodymium-doped sapphire has a promising lasing line at 1096nm with an emission cross section of 11.9×1019cm2, similar to the 1064nm line of Nd:YVO4.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, in Sapphire: Materials, Manufacturing, Applications (Springer, 2009), pp. 55-176.
  2. J. Didierjean, E. Herault, F. Balembois, and P. Georges, Opt. Express 16, 8995 (2008).
    [CrossRef] [PubMed]
  3. G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).
  4. Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.
  5. R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
    [CrossRef]
  6. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [CrossRef]
  7. R. Moncorgé, in Spectroscopic Properties of Rare Earths in Optical Materials, G.Liu and B.Jacquier, eds. (Springer, 2005), pp. 320-378.
    [CrossRef]
  8. D. E. McCumber, Phys. Rev. 136, A954 (1964).
    [CrossRef]
  9. Z. Huang, Y. Huang, Y. Chen, and Z. Luo, J. Opt. Soc. Am. B 22, 2564 (2005).
    [CrossRef]

2009

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

2008

2005

2004

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

1986

1964

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Balembois, F.

Chen, Y.

Didierjean, J.

Dobrovinskaya, E. R.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, in Sapphire: Materials, Manufacturing, Applications (Springer, 2009), pp. 55-176.

Garapon, C.

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

Georges, P.

Hamaguchi, T.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Herault, E.

Hirano, Y.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Huang, Y.

Huang, Z.

Imaki, M.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Koyata, Y.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Kumaran, R.

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

Li, W.

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

Luo, Z.

Lytvynov, L. A.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, in Sapphire: Materials, Manufacturing, Applications (Springer, 2009), pp. 55-176.

Marty, O.

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

McCumber, D. E.

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Moncorgé, R.

R. Moncorgé, in Spectroscopic Properties of Rare Earths in Optical Materials, G.Liu and B.Jacquier, eds. (Springer, 2005), pp. 320-378.
[CrossRef]

Moulton, P. F.

Nakamura, A.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Okano, M.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Penson, S.

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

Pillonnet, A.

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

Pishchik, V.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, in Sapphire: Materials, Manufacturing, Applications (Springer, 2009), pp. 55-176.

Tiedje, T.

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

Wang, G.

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

Webster, S.

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

Yagi, T.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Yamamoto, S.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Yanagisawa, T.

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Zhang, W.

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

Appl. Phys. A

G. Wang, O. Marty, C. Garapon, A. Pillonnet, and W. Zhang, Appl. Phys. A 79, 1599 (2004).

J. Cryst. Growth

R. Kumaran, S. Webster, S. Penson, W. Li, and T. Tiedje, J. Cryst. Growth 311, 2191 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev.

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Other

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, in Sapphire: Materials, Manufacturing, Applications (Springer, 2009), pp. 55-176.

R. Moncorgé, in Spectroscopic Properties of Rare Earths in Optical Materials, G.Liu and B.Jacquier, eds. (Springer, 2005), pp. 320-378.
[CrossRef]

Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamaguchi, A. Nakamura, T. Yagi, and T. Yanagisawa, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

X-ray diffraction from a 107 - nm -thick 0.5 at. % Nd:sapphire film grown on A-plane sapphire, showing (a) a reciprocal space map consisting of θ 2 θ scans for varying sample tilt ω and (b) a single θ 2 θ scan. The film peak is shifted to a lower angle from the substrate peak as a result of Nd doping. This shift increases with Nd concentration. Pendellösung fringes reflect the good overall structural quality of the film. The film thickness and Nd composition were measured by RBS.

Fig. 2
Fig. 2

Room-temperature polarized emission cross sections of Nd:sapphire, showing transitions from the F 3 2 4 manifold to the I 9 2 4 , I 11 2 4 , and I 13 2 4 manifolds. π and σ polarizations occur when the electric field is parallel and perpendicular to the optic axis, respectively. σ τ , the product of emission cross section σ (not to be confused with polarization) and upper state lifetime τ are listed for the strongest emission lines involving the I 9 2 4 and I 11 2 4 manifolds. Inset, room-temperature energy levels for the metastable as well as two lowest energy manifolds.

Fig. 3
Fig. 3

Room-temperature π-polarized absorption cross sections of Nd:sapphire measured by using excitation spectroscopy. Measurements were taken at 1 nm intervals. Peak wavelengths (in nanometers) are labeled. Crosses indicate fine measurements performed to obtain peak heights for use in the reciprocity relation, Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ pol ( λ ) τ = 3 λ 5 I pol ( λ ) 8 π c n 2 [ ( I π ( λ ) + 2 I σ ( λ ) ) λ d λ ] 1 ,
σ a ( λ ) = σ e ( λ ) Z e Z g exp [ ( h c λ E Z L ) k T ] ,

Metrics