Abstract

A compact in-fiber refractive index (RI) sensor is presented that is based on a microhole created in a conventional single-mode fiber by the use of femtosecond laser micromachining. The transmission properties of such a device with a microhole of different diameters have been investigated in the wavelength region of 1500–1600 nm and in the RI range of 1.30–1.45. It is found that the relationship between the transmission and the RI is critically dependent on the size of the microhole in the fiber core region. The highest resolution obtained is 6.70×105, in the RI range of 1.37–1.42, when the microhole diameter is 8μm, close to the fiber core size. The in-fiber RI sensor developed in this work is easy to fabricate and can be used to implement temperature-independent measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu
J. Opt. Soc. Am. B 27(3) 370-374 (2010)

Ultrasensitive refractive index sensor based on a Mach–Zehnder interferometer created in twin-core fiber

Zhengyong Li, Changrui Liao, Yiping Wang, Xiaopeng Dong, Shen Liu, Kaiming Yang, Qiao Wang, and Jiangtao Zhou
Opt. Lett. 39(17) 4982-4985 (2014)

Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment

Lan Jiang, Longjiang Zhao, Sumei Wang, Jinpeng Yang, and Hai Xiao
Opt. Express 19(18) 17591-17598 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription