Abstract

A compact in-fiber refractive index (RI) sensor is presented that is based on a microhole created in a conventional single-mode fiber by the use of femtosecond laser micromachining. The transmission properties of such a device with a microhole of different diameters have been investigated in the wavelength region of 1500–1600 nm and in the RI range of 1.30–1.45. It is found that the relationship between the transmission and the RI is critically dependent on the size of the microhole in the fiber core region. The highest resolution obtained is 6.70×105, in the RI range of 1.37–1.42, when the microhole diameter is 8μm, close to the fiber core size. The in-fiber RI sensor developed in this work is easy to fabricate and can be used to implement temperature-independent measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
    [CrossRef]
  2. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
    [CrossRef]
  3. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef] [PubMed]
  4. Z. Tian, S. S. H. Yam, and H. P. Loock, Opt. Lett. 33, 1105 (2008).
    [CrossRef] [PubMed]
  5. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef] [PubMed]
  6. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
    [CrossRef] [PubMed]
  7. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
    [CrossRef]
  8. R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
    [CrossRef]
  9. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).
    [CrossRef]
  10. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
    [CrossRef]
  11. Y. Lai, K. Zhou, and I. Bennion, Opt. Lett. 31, 2559 (2006).
    [CrossRef] [PubMed]
  12. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, Opt. Express 15, 15848 (2007).
    [CrossRef] [PubMed]
  13. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008).
    [CrossRef] [PubMed]
  14. T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, Opt. Express 16, 5764 (2008).
    [CrossRef] [PubMed]
  15. P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
    [CrossRef]

2009 (2)

2008 (4)

2007 (2)

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, Opt. Express 15, 15848 (2007).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

2006 (1)

2005 (2)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

1997 (2)

1990 (1)

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Badenes, G.

Bennion, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

Cerullo, G.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Chen, X.

Chiang, K. S.

Chichkov, B. N.

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Eggleton, B. J.

Gallagher, J. S.

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

Glezer, E. N.

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

Han, Y.

He, S.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

Jacobs, H.

Jha, R.

Kuhlmey, B. T.

Lai, Y.

Levelt Sengers, J. M. H.

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Li, Y.

Liao, X.

Liu, W. J.

Loock, H. P.

Mansuripur, M.

Martinez Vazquez, R.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Maselli, V.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

Momma, C.

Nolte, S.

Osellame, R.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pruneri, V.

Ramponi, R.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Shiebener, P.

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Straub, J.

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Sugden, K.

Tian, Z.

Tsai, H.

Tunnermann, A.

Villatoro, J.

Wei, T.

Wellegehausen, B.

Welling, H.

Wu, D. K. C.

Xiao, H.

Yam, S. S. H.

Yang, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Zhang, L.

Zhou, K.

Appl. Phys. Lett. (2)

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, IEEE Photon. Technol. Lett. 16, 1149 (2004).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yang, and S. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

P. Shiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission spectra of the microholes of different diameters, filled with RI fluids of 1.30–1.45. (a), (b), and (c) show the normalized transmission versus wavelength of samples S-6a, S-8a, and S-11a, respectively; (d) demonstrates the normalized transmission versus microhole index. The insets of (a)–(c) represent the morphology of S-6a, S-8a, and S-11a (side view), and the diameter of the microholes at the fiber core and cladding interface, respectively. The corresponding microhole diameters for S-6a and S-6b, S-8a and S-8b, and S-11a and S-11b are 6.2, 7.9, and 11 μ m , respectively.

Fig. 2
Fig. 2

Simple explanation of the transmission behavior of the microhole (a) with different hole diameters and (b) of the fiber core size with different RIs.

Fig. 3
Fig. 3

Temperature response of the normalized transmission of the microhole filled with water before calibration (black squares) and after calibration (red triangles).

Metrics