Abstract

We propose the use of closely packed deep-subwavelength plasmonic coaxial waveguides that support backward propagating modes at visible frequencies, analogous to those in planar metal–insulator–metal geometries, as negative-index metamaterials. We show through simulation that the propagation properties of the metamaterial are determined by the dispersion relation of the constitutive waveguides. The metamaterial is polarization independent, is uniform in the propagation direction, and has a subwavelength character in the transversal directions. The transmission loss through the structure is also analyzed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  2. G. Shvets, Phys. Rev. B 67, 035109 (2003).
    [CrossRef]
  3. P. Tournois and V. Laude, Opt. Commun. 137, 41 (1997).
    [CrossRef]
  4. A. Alù and N. Engheta, J. Opt. Soc. Am. B 23, 571 (2006).
    [CrossRef]
  5. H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  6. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
    [CrossRef] [PubMed]
  7. P. B. Catrysse and S. Fan, Appl. Phys. Lett. 94, 231111 (2009).
    [CrossRef]
  8. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
    [CrossRef]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  10. The MATLAB software that we developed for calculating the dispersion relation of coaxial plasmonic waveguides is available at http://www.consolider-metamateriales.es/tools/waveguide_3cyl.zip.
  11. K. Y. Kim, http://arxiv.org/abs/0905.0748.
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef] [PubMed]
  13. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
    [CrossRef]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
    [CrossRef]
  15. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, Opt. Express 17, 6026 (2009).
    [CrossRef] [PubMed]
  16. Y. Poujet, J. Salvi, and F. I. Baida, Opt. Lett. 32, 2942 (2007).
    [CrossRef] [PubMed]
  17. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, Opt. Express 16, 1385 (2008).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (2)

Y. Poujet, J. Salvi, and F. I. Baida, Opt. Lett. 32, 2942 (2007).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

2003 (1)

G. Shvets, Phys. Rev. B 67, 035109 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

1997 (2)

1974 (1)

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Adegoke, J. A.

Alù, A.

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Bahoura, M.

Baida, F. I.

Brongersma, M. L.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, Appl. Phys. Lett. 94, 231111 (2009).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Economou, E. N.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Engheta, N.

Fan, S.

P. B. Catrysse and S. Fan, Appl. Phys. Lett. 94, 231111 (2009).
[CrossRef]

H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

García-Meca, C.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

Kim, K. Y.

K. Y. Kim, http://arxiv.org/abs/0905.0748.

Kobayashi, T.

Laude, V.

P. Tournois and V. Laude, Opt. Commun. 137, 41 (1997).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Martí, J.

Martínez, A.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Mayy, M.

Morimoto, A.

Ngai, K. L.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Noginov, M. A.

Ortuño, R.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

Pfeiffer, C. A.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Podolskiy, V. A.

Poujet, Y.

Reynolds, K.

Ritzo, B. A.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

Rodríguez-Fortuño, F. J.

Salvi, J.

Shin, H.

H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

Shvets, G.

G. Shvets, Phys. Rev. B 67, 035109 (2003).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

Takahara, J.

Taki, H.

Tournois, P.

P. Tournois and V. Laude, Opt. Commun. 137, 41 (1997).
[CrossRef]

Yamagishi, S.

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

Zhu, G.

Zia, R.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

P. B. Catrysse and S. Fan, Appl. Phys. Lett. 94, 231111 (2009).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).
[CrossRef]

Opt. Commun. (1)

P. Tournois and V. Laude, Opt. Commun. 137, 41 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

G. Shvets, Phys. Rev. B 67, 035109 (2003).
[CrossRef]

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Science (2)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Other (2)

The MATLAB software that we developed for calculating the dispersion relation of coaxial plasmonic waveguides is available at http://www.consolider-metamateriales.es/tools/waveguide_3cyl.zip.

K. Y. Kim, http://arxiv.org/abs/0905.0748.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Geometry of a plasmonic coaxial waveguide. (b) Proposed metamaterial: array of waveguides inside a metal.

Fig. 2
Fig. 2

(a) Permittivity of metal [ ε m ( ω ) = 1 ω p 2 / ω 2 ] and of dielectric material. (b) Theoretical dispersion relation [10] for a single infinite coaxial plasmonic waveguide with dimensions of a 1 = 10   nm and d = 7   nm (modes m = 1 ). The light line is shown for reference. (c) Simulated field transmission spectra for different angles of plane-wave incidence into a structure as depicted in Fig. 1b ( D x = D y = 70   nm and L w g = 100   nm ) using low-loss metal. Dashed lines have been added at the expected waveguide resonances. (d) Simulated field distribution at two transmission peaks. (e) Simulated field transmission spectra for a structure with and without interleaved waveguides in the x and y directions (increased D x = D y = L w g = 150   nm ).

Fig. 3
Fig. 3

(a) Theoretical complex dispersion relation [10] of the coaxial plasmonic waveguide using realistic silver. (b) Simulated field spectra at normal incidence for a structure as depicted in Fig. 1b ( D x = D y = 70   nm , L w g = 100   nm ) using realistic silver. (c) Electric field at 700 THz for the proposed structure (with L w g = 200   nm ).

Metrics