Abstract

Mode-hop-free operation of an extended-cavity diode laser is achieved with an innovative technique. A chirped (varied-line-space) diffraction grating is used as an external coupler. Continuous tuning is obtained by a simple linear translation of the grating. The measured continuous tuning range is currently as wide as 37nm (4.6THz) near 1550nm with a relatively constant output power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Zachos and J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969).
    [CrossRef]
  2. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, Opt. Lett. 25, 472 (2000).
    [CrossRef]
  3. P. Zorabedian, IEEE J. Quantum Electron. 30, 1542 (1994).
    [CrossRef]
  4. Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
    [CrossRef]
  5. M. G. Littman and H. J. Metcalf, Appl. Opt. 17, 2224 (1978).
    [CrossRef] [PubMed]
  6. M. G. Littman, Opt. Lett. 3, 138 (1978).
    [CrossRef] [PubMed]
  7. K. Liu and M. G. Littman, Opt. Lett. 6, 117 (1981).
    [CrossRef] [PubMed]
  8. P. McNicholl and H. J. Metcalf, Appl. Opt. 24, 2757 (1985).
    [CrossRef] [PubMed]
  9. L. Levin, Opt. Lett. 27, 237 (2002).
    [CrossRef]
  10. M. de Labachelerie and G. Passedat, Appl. Opt. 32, 269 (1993).
    [CrossRef] [PubMed]
  11. H. Lotem, Appl. Opt. 33, 3816 (1994).
    [CrossRef] [PubMed]
  12. M. de Labachelerie, H. Sasada, and G. Passedat, Appl. Opt. 33, 3817 (1994).
    [CrossRef] [PubMed]
  13. F. Favre and D. Le Guen, Electron. Lett. 27, 183 (1991).
    [CrossRef]
  14. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, Opt. Lett. 26, 1955 (2001).
    [CrossRef]
  15. M. Duval, G. Fortin, M. Piché, and N. McCarthy, Appl. Opt. 44, 5112 (2005).
    [CrossRef] [PubMed]
  16. V. Zambon, M. Piché, and N. McCarthy, Opt. Commun. 264, 180 (2006).
    [CrossRef]
  17. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
    [CrossRef] [PubMed]
  18. G. Fortin and N. McCarthy, Appl. Opt. 44, 4874 (2005).
    [CrossRef] [PubMed]
  19. G. Fortin and N. McCarthy, J. Opt. Soc. Am. A 25, 2139 (2008).
    [CrossRef]

2009 (1)

2008 (1)

2006 (1)

V. Zambon, M. Piché, and N. McCarthy, Opt. Commun. 264, 180 (2006).
[CrossRef]

2005 (2)

2002 (1)

2001 (2)

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, Opt. Lett. 26, 1955 (2001).
[CrossRef]

2000 (1)

1994 (3)

1993 (1)

1991 (1)

F. Favre and D. Le Guen, Electron. Lett. 27, 183 (1991).
[CrossRef]

1985 (1)

1981 (1)

1978 (2)

1969 (1)

T. H. Zachos and J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969).
[CrossRef]

Andreeva, Ch.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Carlsten, J. L.

Cartaleva, S.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Dancheva, Y.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

de Labachelerie, M.

Duval, M.

Favre, F.

F. Favre and D. Le Guen, Electron. Lett. 27, 183 (1991).
[CrossRef]

Fortin, G.

Glebov, L.

Godard, A.

Graindorge, P.

Jacobsson, B.

Laurell, F.

Le Guen, D.

F. Favre and D. Le Guen, Electron. Lett. 27, 183 (1991).
[CrossRef]

Levin, L.

Littman, M. G.

Liu, K.

Lotem, H.

Markovski, A.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Martin, P.

McCarthy, N.

McNicholl, P.

Meng, L. S.

Metcalf, H. J.

Pasiskevicius, V.

Passedat, G.

Pauliat, G.

Piché, M.

Repasky, K. S.

Ripper, J. E.

T. H. Zachos and J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969).
[CrossRef]

Roos, P. A.

Roosen, G.

Rotari, E.

Sasada, H.

Smirnov, V.

Taslakov, M.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Zachos, T. H.

T. H. Zachos and J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969).
[CrossRef]

Zambon, V.

V. Zambon, M. Piché, and N. McCarthy, Opt. Commun. 264, 180 (2006).
[CrossRef]

Zorabedian, P.

P. Zorabedian, IEEE J. Quantum Electron. 30, 1542 (1994).
[CrossRef]

Zubov, P.

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Appl. Opt. (7)

Electron. Lett. (1)

F. Favre and D. Le Guen, Electron. Lett. 27, 183 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. H. Zachos and J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969).
[CrossRef]

P. Zorabedian, IEEE J. Quantum Electron. 30, 1542 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

V. Zambon, M. Piché, and N. McCarthy, Opt. Commun. 264, 180 (2006).
[CrossRef]

Opt. Lett. (6)

Spectrosc. Lett. (1)

Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectrosc. Lett. 34, 395 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schema of our ECDL (tangential plane).

Fig. 2
Fig. 2

Characteristics of the chirped grating used in the ECDL. (a) Curved lines and axis of symmetry in the x y plane (the line curvature is to scale, but the line space is not). (b) Line space along the axis of symmetry.

Fig. 3
Fig. 3

Laser performance as a function of x 0 . (a) Laser wavelength. (b) Wavelength increment between successive measurements (reveals mode hops, if any). (c) Output power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ ( x 0 ) = Λ ref [ 1 + ( x 0 x 0 ref ) sin ( β θ ) L ref cos θ ] [ sin θ cos β ] [ sin ( β θ ) ] ,
2 π [ N ( x 0 ) 2 L ( x 0 ) λ ( x 0 ) ] = constant ,
N ( x 0 ) x 0 ref x 0 d x Λ ( x )
λ ¯ ( x 0 ) 2 Λ ( x 0 ) sin β
L ( x 0 ) = L ref + ( x 0 x 0 ref ) sin ( β θ ) cos θ .

Metrics