Abstract

We propose a generalized approach to producing optical vortices with suppressed sidelobes using a variable Bessel-like function added to the conventional spiral phase plate. Experimental verifications are implemented by a phase-only spatial light modulator. It is demonstrated that the method is valid for optical vortex beams with arbitrary topological charges and without changing the primary ring size as a unique property among the existing techniques.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  2. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Matre, Opt. Express 13, 689 (2005).
    [CrossRef] [PubMed]
  3. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef] [PubMed]
  4. J. Courtial and M. J. Padgett, Opt. Commun. 159, 13 (1999).
    [CrossRef]
  5. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).
    [CrossRef] [PubMed]
  6. W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
    [CrossRef]
  7. C. S. Guo, X. Liu, J. L. He, and H. T. Wang, Opt. Express 12, 4625 (2004).
    [CrossRef] [PubMed]
  8. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Berge, Opt. Lett. 31, 1600 (2006).
    [CrossRef] [PubMed]
  9. V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, C. S. Tuvey, and J. A. Davis, Opt. Lett. 32, 921 (2007).
    [CrossRef] [PubMed]
  10. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Y. Moiseev, and V. A. Soifer, J. Opt. Technol. 74, 686 (2007).
    [CrossRef]
  11. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, 1983).
  12. S. Sundbeck, I. Gruzberg, and D. G. Grier, Opt. Lett. 30, 477 (2005).
    [CrossRef] [PubMed]
  13. V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, and V. A. Soifer, Opt. Lett. 31, 1597 (2006).
    [CrossRef] [PubMed]
  14. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).
    [CrossRef]

2007 (2)

2006 (2)

2005 (2)

2004 (3)

2003 (1)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

1999 (2)

1992 (1)

Barnett, S. M.

Berge, R. E.

Bernet, S.

Brychkov, Yu. A.

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, 1983).

Campos, J.

Cheong, W. C.

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Cottrell, D. M.

Courtial, J.

Davis, J. A.

Dholakia, K.

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Franke-Arnold, S.

Furhapter, S.

Gibson, G.

Grier, D. G.

Gruzberg, I.

Guo, C. S.

He, J. L.

Heckenberg, N. R.

Jesacher, A.

Khonina, S. N.

Kotlyar, V. V.

Kovalev, A. A.

Lee, W. M.

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Lin, J.

Liu, X.

Marichev, O. I.

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, 1983).

McDuff, R.

Moiseev, O. Y.

Moreno, I.

Padgett, M.

Padgett, M. J.

J. Courtial and M. J. Padgett, Opt. Commun. 159, 13 (1999).
[CrossRef]

Pas'ko, V.

Prudnikov, A. P.

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, 1983).

Ritsch-Matre, M.

Skidanov, R. V.

Smith, C. P.

Soifer, V. A.

Sundbeck, S.

Tao, S. H.

Tuvey, C. S.

Vasnetsov, M.

Wang, H.

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Wang, H. T.

White, A. G.

Yuan, X. C.

J. Lin, X. C. Yuan, S. H. Tao, and R. E. Berge, Opt. Lett. 31, 1600 (2006).
[CrossRef] [PubMed]

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Yzuel, M. J.

Zhang, L. S.

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

J. Opt. Technol. (1)

Nature (1)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Courtial and M. J. Padgett, Opt. Commun. 159, 13 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (1)

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Radial intensity distribution of the Fraunhofer diffraction pattern diffracted by conventional SPP in (a) and (c) of n=1 and 20, respectively; (b) the Bessel-like function J 2 ( α r ) / r modulated spiral phase ( n = 1 ) with α = 1.712 mm 1 (solid curve) and J 0 ( α r ) / r modulation with α = 0.802 mm 1 (dotted curve); (d) J 21 ( α r ) / r modulated spiral phase ( n = 20 ) with α = 8.83 mm 1 (solid curve) and J 19 ( α r ) / r modulation with α = 8.11 mm 1 (dotted curve).

Fig. 2
Fig. 2

(a) Conventional SPP ( n = 10 , R = 3   mm ) in terms of circl ( r / R ) exp ( i n φ ) . (b) Normalized Bessel-like modulation mask ( n = 10 , α = 4.45 mm 1 ) in terms of J n 1 ( α r ) / r . (c) Modulated spiral phase hologram encoded onto SLM.

Fig. 3
Fig. 3

Fraunhofer diffraction patterns showing the (a) conventional optical vortex, (b) modified optical vortex, and (c) intensity profiles comparing the theory and experiment of the Bessel-like function modulated SPP.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

0 J v 1 ( b x ) J v ( c x ) d x = b v 1 c v { 1 when   0 < b < c 0 when   0 < c < b } ,
τ n ( r , φ ) = J n 1 ( α r ) r circl ( r R ) exp ( i n φ ) , n = ± 1 , ± 2 , ,
E n ( ρ , θ ) = i k 2 π f 0 R 0 2 π J n 1 ( α r ) r exp ( i n φ ) exp [ i k f r ρ   cos ( φ θ ) ] r d r d φ = ( i ) n + 1 k f exp ( i n θ ) 0 R J n 1 ( α r ) J n ( k f ρ r ) d r ,
α = γ n 1 , 1 R ,     ρ n γ n , 1 f k R ,
E n ( ρ , θ ) = ( i ) n + 1 k f exp ( i n θ ) 0 R J n ( k f ρ r ) r d r .

Metrics