Abstract

We demonstrate self-trapping of light by simultaneously compensating normal and anomalous (saddle-shaped) diffractions with self-focusing and self-defocusing hybrid nonlinearity in optically induced ionic-type photonic lattices. Innovative two-dimensional gap solitons, named “saddle solitons,” are established, whose phase and spectrum characteristics are different from all previously observed spatial solitons.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orientation-dependent excitations of lattice soliton trains with hybrid nonlinearity

Yi Hu, Cibo Lou, Sheng Liu, Peng Zhang, Jianlin Zhao, Jingjun Xu, and Zhigang Chen
Opt. Lett. 34(7) 1114-1116 (2009)

Optically induced transition between discrete and gap solitons in a nonconventionally biased photorefractive crystal

Peng Zhang, Sheng Liu, Jianlin Zhao, Cibo Lou, Jingjun Xu, and Zhigang Chen
Opt. Lett. 33(8) 878-880 (2008)

Observation of self-trapping and rotation of higher-band gap solitons in two-dimensional photonic lattices

Shiqiang Xia, Daohong Song, Yuanyuan Zong, Liqin Tang, and Zhigang Chen
Opt. Express 23(4) 4397-4405 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription