Abstract

An autostereoscopic 3D projector using several 2D projectors, a projection screen, and two parallax barriers is proposed. Parallax barrier 1 facing the 2D projectors collimates the images that have aberrations on the edge of the projection screen. Parallax barrier 2 facing viewers acts as the parallax barrier in ordinary autostereoscopic 3D displays. The operation principle of the system, the calculation equations for the parallax barriers, and the capture and correction of parallax images are described in detail. A 60- inch autostereoscopic 3D projector prototype having four 2D projectors was developed. The presentation of 3D static, animation, and video images is realized by the prototype. The prototype’s stereoscopic images without aberrations and with a little cross talk are sharp. Especially, its 3D resolution is the same as its 2D resolution.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Dodgson, Computer 38, 31 (2005).
    [CrossRef]
  2. T. Okoshi, Three Dimensional Imaging Techniques (Academic, 1976).
  3. J. Y. Son, Appl. Opt. 43, 4985 (2004).
    [CrossRef] [PubMed]
  4. R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).
  5. P. May, Inf. Disp. 19, 26 (2003).
  6. W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
    [CrossRef]
  7. K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
    [CrossRef]
  8. J. Harrold and G. J. Woodgate, Proc. SPIE 6490, 1 (2007).

2009 (1)

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

2008 (1)

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

2007 (2)

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

J. Harrold and G. J. Woodgate, Proc. SPIE 6490, 1 (2007).

2005 (1)

N. A. Dodgson, Computer 38, 31 (2005).
[CrossRef]

2004 (1)

2003 (1)

P. May, Inf. Disp. 19, 26 (2003).

Ahn, B. C.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Chang, J. W.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Chung, I. J.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Dodgson, N. A.

N. A. Dodgson, Computer 38, 31 (2005).
[CrossRef]

Harrold, J.

J. Harrold and G. J. Woodgate, Proc. SPIE 6490, 1 (2007).

Jang, M. K.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Kang, H.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Kim, K. J.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Kim, S. T.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Lee, K. I.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Li, D. H.

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

May, P.

P. May, Inf. Disp. 19, 26 (2003).

Okoshi, T.

T. Okoshi, Three Dimensional Imaging Techniques (Academic, 1976).

Park, T. S.

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Son, J. Y.

Tao, Y. H.

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

Wang, A. H.

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Wang, Q. H.

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Woodgate, G. J.

J. Harrold and G. J. Woodgate, Proc. SPIE 6490, 1 (2007).

Xin, Y. X.

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Zhao, R. L.

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Zhao, W. X.

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Acta Photonica Sin. (1)

R. L. Zhao, W. X. Zhao, Q. H. Wang, D. H. Li, A. H. Wang, and Y. X. Xin, Acta Photonica Sin. 37, 960 (2008).

Appl. Opt. (1)

Computer (1)

N. A. Dodgson, Computer 38, 31 (2005).
[CrossRef]

Inf. Disp. (1)

P. May, Inf. Disp. 19, 26 (2003).

J. Soc. Inf. Disp. (1)

K. J. Kim, H. Kang, M. K. Jang, B. C. Ahn, I. J. Chung, T. S. Park, J. W. Chang, K. I. Lee, and S. T. Kim, J. Soc. Inf. Disp. 15, 899 (2007).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

W. X. Zhao, Q. H. Wang, D. H. Li, and Y. H. Tao, Mol. Cryst. Liq. Cryst. 507, 67 (2009).
[CrossRef]

Proc. SPIE (1)

J. Harrold and G. J. Woodgate, Proc. SPIE 6490, 1 (2007).

Other (1)

T. Okoshi, Three Dimensional Imaging Techniques (Academic, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure and principle of the autostereoscopic 3D projector based on two parallax barriers.

Fig. 2
Fig. 2

Four-view images having parallax for a stereoscopic image.

Fig. 3
Fig. 3

Correction of the parallax images on the projection screen: (a) Images before correction; (b) images after correction.

Fig. 4
Fig. 4

The 60 - inch autostereoscopic 3D projector prototype based on two parallax barriers.

Fig. 5
Fig. 5

The four-view parallax images’ normalized luminance of the autostereoscopic 3D projector prototype along the horizontal direction at the optimal viewing distance.

Tables (2)

Tables Icon

Table 1 Specifications of the Autostereoscopic 3D Projector Prototype

Tables Icon

Table 2 Performances of the Autostereoscopic 3D Projector Prototype

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

w s = e W p e + W p ,
w b = w s ( k 1 ) ,
d = W p l e + W p ,
W S = E W P E + W P ,
W B = W S ( K 1 ) ,
D = W P L E + W P ,

Metrics