Abstract

We propose and demonstrate a new method to manipulate the Brillouin frequency shift in silica optical fiber by introducing a silica hollow optical fiber (HOF) waveguide structure. Propagation characteristics of acoustic waves guided along the HOF were theoretically analyzed, and the corresponding Brillouin frequency shifts were measured by a Brillouin optical-correlation domain-analysis system. We experimentally observed that Brillouin frequency shift vB monotonically increases as a function of the central air-hole radius, which showed good agreement with the simulation results. We confirmed that a precise control of Brillouin frequency shift can be obtained by controlling the waveguide parameters of the HOF.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [CrossRef]
  2. K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996).
    [CrossRef]
  3. S. P. Smith, F. Zarinetchi, and S. Ezekiel, Opt. Lett. 16, 393 (1991).
    [CrossRef] [PubMed]
  4. T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
    [CrossRef]
  5. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
    [CrossRef]
  6. L. Thevenaz, Nat. Photonics 2, 474 (2008).
    [CrossRef]
  7. J. Yu, I.-B. Kwon, and K. Oh, J. Lightwave Technol. 21, 1779 (2003).
    [CrossRef]
  8. W. Zou, Z. He, and K. Hotate, Opt. Express 16, 10006 (2008).
    [CrossRef] [PubMed]
  9. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
    [CrossRef]
  10. Y. Jung, S. B. Lee, J. W. Lee, and K. Oh, Opt. Lett. 30, 84 (2005).
    [CrossRef] [PubMed]
  11. R. A. Waldron, IEEE Transactions on Mirowave Theory and Techniques MTT-17, 893 (1969).
    [CrossRef]
  12. A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2007).
  13. K. Y. Song, Z. He, and K. Hotate, Opt. Lett. 31, 2526 (2006).
    [CrossRef] [PubMed]

2008 (2)

2006 (1)

2005 (2)

2003 (1)

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996).
[CrossRef]

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
[CrossRef]

1991 (1)

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
[CrossRef]

1972 (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

1969 (1)

R. A. Waldron, IEEE Transactions on Mirowave Theory and Techniques MTT-17, 893 (1969).
[CrossRef]

Choi, S.

Ezekiel, S.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
[CrossRef]

Gilat, A.

A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2007).

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
[CrossRef]

Hotate, K.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Jung, Y.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
[CrossRef]

Kwon, I.-B.

Lee, J. W.

Lee, S. B.

Oh, K.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996).
[CrossRef]

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
[CrossRef]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
[CrossRef]

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996).
[CrossRef]

Smith, S. P.

Song, K. Y.

Stolen, R. H.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Subramaniam, V.

A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2007).

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
[CrossRef]

Thevenaz, L.

L. Thevenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Waldron, R. A.

R. A. Waldron, IEEE Transactions on Mirowave Theory and Techniques MTT-17, 893 (1969).
[CrossRef]

Yu, J.

Zarinetchi, F.

Zou, W.

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990).
[CrossRef]

IEEE Transactions on Mirowave Theory and Techniques (1)

R. A. Waldron, IEEE Transactions on Mirowave Theory and Techniques MTT-17, 893 (1969).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (1)

L. Thevenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994).
[CrossRef]

Other (1)

A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic structure and (b) cross section of an HOF. (c) Corresponding refractive index (solid line) at 1550 nm and longitudinal acoustic velocity (dashed line) profile in the HOF.

Fig. 2
Fig. 2

Numerical analysis of the Brillouin frequency shift as a function of air-hole diameter along with experimental results.

Fig. 3
Fig. 3

Schematic experimental setup for measuring Brillouin gain spectrum. DFBLD, distributed-feedback laser diode; EOM, electro-optic modulator; FUT, fiber under test; SSBM, single sideband modulator, EDFA, erbium-doped fiber amplifier; PSW, polarization switch, PD, photodiode; VOA, variable optical attenuator; SMF, single-mode fiber.

Fig. 4
Fig. 4

(a) Distributed measurement of Brillouin gain peak frequencies of serially concatenated SMF–HOF–SMF with 2 μ m air-hole diameter. Brillouin gain spectra for HOFs with the air hole diameter of (b) 2, (c) 4, and (d) 6 μ m . The inset of (d) shows normalized Brillouin gain spectrum of the HOF.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ 2 u ( λ + μ ) ( u ) = ρ 2 u t 2 ,
2 ϕ ( 1 V Li 2 ) 2 ϕ t 2 = 0 , 2 ψ ( 1 V Si 2 ) 2 ψ t 2 = 0 ,
( t 2 + h i 2 ) ϕ = 0 , ( t 2 + k i 2 ) ψ = 0 ,
u r ( r , z ) = { ( A 1 h 1 J 0 ( h 1 r ) + A 2 h 1 N 0 ( h 1 r ) + B 1 β J 0 ( k 1 r ) + B 2 β N 0 ( k 1 r ) ) exp i ( ω t β z ) ( a < r b ) ( A 3 h 2 K 0 ( h 2 r ) + B 3 β J 0 ( k 2 r ) ) exp i ( ω t β z ) ( r > b ) } ,
u z ( r , z ) = { i ( A 1 β J 0 ( h 1 r ) A 2 β N 0 ( h 1 r ) + B 1 k 1 J 0 ( k 1 r ) + B 2 k 1 N 0 ( k 1 r ) ) exp i ( ω t β z ) ( a < r b ) i ( A 3 β K 0 ( h 2 r ) + B 3 k 2 J 0 ( k 2 r ) ) exp i ( ω t β z ) ( r > b ) } ,
u ϕ = 0 ,
v B = 2 n eff λ V ,

Metrics