Abstract

An optical modulation mechanism based on dynamically shifting the photonic potential barrier of a photonic crystal waveguide is presented. The modulation mechanism is modeled by the one-dimensional quantum tunneling effect using the Schrödinger equation. The calculation results show that the modulation efficiency is 200 times higher than that of the conventional Mach–Zehnder modulator. Based on this innovative concept, an engineering design of an ultracompact silicon photonic crystal waveguide modulator with 10μm×5μm footprint is presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 1059 (1987).
    [CrossRef]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  4. W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
    [CrossRef]
  5. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
    [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  7. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
    [CrossRef]
  8. B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
    [CrossRef]
  9. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
    [CrossRef]
  10. X. L. Wang and R. T. Chen, U.S. patent pending, 455,791 (application date, June 8, 2009).
  11. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003).
    [CrossRef]
  12. L. H. Frandsen, A. V. Lavrineko, J. F. Pedersen, and P. I. Borel, Opt. Express 14, 9444 (2006).
    [CrossRef] [PubMed]
  13. P. Pottier, M. Gnan, and R. M. D. L. Rue, Opt. Express 15, 6569 (2007).
    [CrossRef] [PubMed]

2007 (2)

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

P. Pottier, M. Gnan, and R. M. D. L. Rue, Opt. Express 15, 6569 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
[CrossRef]

2003 (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

2001 (1)

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 1059 (1987).
[CrossRef]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Borel, P. I.

Chen, R. T.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
[CrossRef]

X. L. Wang and R. T. Chen, U.S. patent pending, 455,791 (application date, June 8, 2009).

Chen, X.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Frandsen, L. H.

Gnan, M.

Gu, L.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Jiang, W.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

Lavrineko, A. V.

Lu, X.

W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Notomi, M.

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Pedersen, J. F.

Pottier, P.

Razavy, M.

M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003).
[CrossRef]

Rue, R. M. D. L.

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Wang, L.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Wang, X. L.

X. L. Wang and R. T. Chen, U.S. patent pending, 455,791 (application date, June 8, 2009).

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 1059 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Nature (2)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, Phys. Rev. Lett. 58, 1059 (1987).
[CrossRef]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Other (2)

X. L. Wang and R. T. Chen, U.S. patent pending, 455,791 (application date, June 8, 2009).

M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003).
[CrossRef]

Supplementary Material (6)

» Media 1: JPG (51 KB)     
» Media 2: JPG (53 KB)     
» Media 3: JPG (92 KB)     
» Media 4: JPG (116 KB)     
» Media 5: JPG (130 KB)     
» Media 6: JPG (103 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Design principle of the photonic band modulation: (a) ON state with light passing through the active region (Media 1), (b) OFF state rejecting the incident light (Media 2).

Fig. 2
Fig. 2

Photonic band diagram of W1 silicon PCW at different index modulation levels (Media 3).

Fig. 3
Fig. 3

Performance comparison of conventional MZ modulator, 20 × slow-photon-enhanced MZ modulator, and photonic band modulation device (Media 4).

Fig. 4
Fig. 4

(a) Schematic of the photonic band modulation device with 10 μ m × 5 μ m footprint (Media 5). (b) Simulated transmission spectrum by 2-D FDTD method (Media 6).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 2 m d 2 d x 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) ,
d 2 d x 2 ψ ( x ) = 2 m 2 [ V ( x ) E ] ψ ( x ) = κ 2 ψ ( x ) ,
T = | C outgoing C incoming | = e 2 x 1 x 2 d x 2 m 2 [ V ( x ) E ] ( 1 + 1 4 e 2 x 1 x 2 d x 2 m 2 [ V ( x ) E ] ) 2 ,
E = 2 2 m k 2 = 2 2 m ( 2 π n λ ) 2 ,
T = e 2 x 1 x 2 2 π n λ d x [ V ( x ) E ] E ( 1 + 1 4 e 2 x 1 x 2 2 π n λ d x [ V ( x ) E ] E ) 2 .
Δ E E = 0.0615 Δ n 0.2413 .

Metrics