Abstract

All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry–Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound–Drever–Hall length sensing and control techniques to maintain the required operating condition.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Aufmuth and K. Danzmann, New J. Phys. 7, 202 (2005).
    [CrossRef]
  2. K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
    [CrossRef]
  3. A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, Opt. Lett. 29, 2342 (2004).
    [CrossRef] [PubMed]
  4. K.-X. Sun and R. L. Byer, Opt. Lett. 23, 567 (1998).
    [CrossRef]
  5. A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, Opt. Lett. 31, 2384 (2006).
    [CrossRef] [PubMed]
  6. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, Opt. Express 13, 4370 (2005).
    [CrossRef] [PubMed]
  7. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  8. A. Bunkowski, O. Burmeister, K. Danzmann, and R. Schnabel, Opt. Lett. 30, 1183 (2005).
    [CrossRef] [PubMed]
  9. A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
    [CrossRef]

2007

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[CrossRef]

2006

2005

2004

1998

1994

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Aufmuth, P.

P. Aufmuth and K. Danzmann, New J. Phys. 7, 202 (2005).
[CrossRef]

Beyersdorf, P.

Bunkowski, A.

Burmeister, O.

Byer, R. L.

Clausnitzer, T.

Danzmann, K.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Duparré, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Freise, A.

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[CrossRef]

Gliech, S.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kley, E. -B.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Mizuno, J.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nelson, P. G.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Rüdiger, A.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Schilling, R.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Schnabel, R.

Strain, K. A.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Sun, K. -X.

Tünnermann, A.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Winkler, W.

K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, Phys. Lett. A 194, 124 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simplified schematic of the three-port second-order Littrow mount grating used as the input coupler for a diffractive Fabry–Perot cavity. Tuned photodiodes (PDs) are positioned at all three output ports to detect the DC power and rf component for derivation of the control signals.

Fig. 2
Fig. 2

Normalized rf power for all three output ports C 1 (top), C 2 transmitted through the end mirror (middle), and C 3 (bottom). The solid (blue) trace indicates in-phase measurements, and the dashed (green) trace indicates quadrature phase. The absolute scaling between modeled ports 1, 2, and 3 is 2:1:163.

Fig. 3
Fig. 3

Simulated reflected field, demodulated signals C 1 (red dashed trace) and C 3 (blue dashed–dotted trace), and the combined demodulated signal C 1 + C 3 (black solid trace). The grating parameters chosen here are for an ideal (lossless) grating with ρ 0 = 0.99663 , η 1 = 0.0407 , and η 0 = η 2 = 0.7065 .

Tables (1)

Tables Icon

Table 1 Measured and Modeled Signal Responses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 3 p = [ η 2 e i ϕ 2 η 1 e i ϕ 1 η 0 e i ϕ 0 η 1 e i ϕ 1 ρ 0 e i ϕ 0 η 1 e i ϕ 1 η 0 e i ϕ 0 η 1 e i ϕ 1 η 2 e i ϕ 2 ] ,
c 1 = η 2 e i ϕ 2 + η 1 2 e 2 i ( ϕ 1 + ϕ ) d ,
c 2 t = i τ 1 η 1 e i ( ϕ 1 + ϕ ) d ,
c 3 = η 0 + η 1 2 e 2 i ( ϕ 1 + ϕ ) d ,

Metrics