Abstract

Laser surface authentication (LSA) is a technique for authenticating optically rough surfaces based on the intensity of diffusely scattered light. The degradation in the LSA signature over linear and rotational displacement is examined. Randomly roughened glass surfaces with roughness amplitudes ranging from 0.4μmto3μm and correlation lengths from 16μmto45μm are examined experimentally, showing that the average size of the surface feature has a negligible impact on the rate of LSA signature degradation. The average size of the surface features is shown to have a greater effect on the fractional intensity of the variations in diffuse light and on the quality of LSA signature match.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, pp. 1-40.
    [CrossRef]
  2. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
    [CrossRef] [PubMed]
  3. J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
    [CrossRef] [PubMed]
  4. M. Griswold, M. Harrison, and D. Saltzberg, J. Opt. Soc. Am. A 24, 3207 (2007).
    [CrossRef]
  5. J. Daugman, Pattern Recogn. 36, 279 (2003).
    [CrossRef]

2007

2005

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

2003

J. Daugman, Pattern Recogn. 36, 279 (2003).
[CrossRef]

2002

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Allwood, D. A.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Atkinson, D.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Bryan, M. T.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Buchanan, J. D. R.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Cowburn, R. P.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, pp. 1-40.
[CrossRef]

Daugman, J.

J. Daugman, Pattern Recogn. 36, 279 (2003).
[CrossRef]

Fenton, K.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Gershenfeld, N.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Griswold, M.

Harrison, M.

Jausovec, A.-V.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Pappu, R.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Petit, D.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Recht, B.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Saltzberg, D.

Seem, P.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Taylor, J.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Xiong, G.

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nature

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan, Nature 436, 475 (2005).
[CrossRef] [PubMed]

Pattern Recogn.

J. Daugman, Pattern Recogn. 36, 279 (2003).
[CrossRef]

Science

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 2026 (2002).
[CrossRef] [PubMed]

Other

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, pp. 1-40.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A 650 nm laser diode A is focused to spot C, 5 mm long (y axis) and 50 100 μ m wide (x axis). A photodetector B is positioned 10 mm from the focal spot, elevated from the surface by 45° such that the optical path A–C–B is in the xz plane. An LSA signature is formed from the measured intensity of diffusely scattered light as this sensor block moves along a random rough surface in the x direction.

Fig. 2
Fig. 2

The maximum achievable quality of match (BMR) shows a significant (greater than the error) dependence on the height and wavelength of surface roughness. Smaller surface features lead to a lower fractional intensity ( d I I ¯ ) and therefore a poorer LSA signature match. The values plotted are the average for four different locations on each sample. Error bars show the standard deviation of the four values. For clarity, BMR is offset slightly in x.

Fig. 3
Fig. 3

BMR between a scan taken with roll = 0 and a scan taken with the indicated offset to roll. Each point is the average BMR at that offset from four passes over the surface, and error bars show minimum/maximum values at each offset. The top trace (120 grit) corresponds to a surface with 3.1 μ m rms height, the middle trace (220 grit) to 1.6 μ m , and the bottom trace (600 grit) to 0.4 μ m .

Fig. 4
Fig. 4

Sensitivity of the LSA signal to misplacement in five different orientations, as measured by the rate of decline in BMR. Bars show the error in the calculated slope of the linear fit. The yaw exhibits a weak (within the error) dependence on surface height and correlation length, while the four other axes show no particular relationship to roughness.

Metrics