Abstract

Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Wetsel, Jr., J. Appl. Phys. 51, 3586 (1980).
    [CrossRef]
  2. C. D. Meinhart and H. Zhang, J. Microelectromech. Syst. 9, 67 (2000).
    [CrossRef]
  3. J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
    [CrossRef]
  4. B. Wallace, AMD (Am. Soc. Mech. Eng.) 4, 1 (1989).
  5. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
    [CrossRef]
  6. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Opt. Lett. 30, 616 (2005).
    [CrossRef] [PubMed]
  7. A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
    [CrossRef]

2007 (1)

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

2006 (1)

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

2005 (1)

2004 (1)

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

2000 (1)

C. D. Meinhart and H. Zhang, J. Microelectromech. Syst. 9, 67 (2000).
[CrossRef]

1989 (1)

B. Wallace, AMD (Am. Soc. Mech. Eng.) 4, 1 (1989).

1980 (1)

G. C. Wetsel, Jr., J. Appl. Phys. 51, 3586 (1980).
[CrossRef]

Farahi, R. H.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Opt. Lett. 30, 616 (2005).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Ferrell, T. L.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Opt. Lett. 30, 616 (2005).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Lereu, A. L.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

Meinhart, C. D.

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

C. D. Meinhart and H. Zhang, J. Microelectromech. Syst. 9, 67 (2000).
[CrossRef]

Passian, A.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Opt. Lett. 30, 616 (2005).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Sakai, S.

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

Sethian, J. A.

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

Thundat, T.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Opt. Lett. 30, 616 (2005).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Wallace, B.

B. Wallace, AMD (Am. Soc. Mech. Eng.) 4, 1 (1989).

Wetsel, G. C.

G. C. Wetsel, Jr., J. Appl. Phys. 51, 3586 (1980).
[CrossRef]

Yu, J.-D.

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

Zahrai, S.

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

Zhang, H.

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

C. D. Meinhart and H. Zhang, J. Microelectromech. Syst. 9, 67 (2000).
[CrossRef]

AMD (Am. Soc. Mech. Eng.) (1)

B. Wallace, AMD (Am. Soc. Mech. Eng.) 4, 1 (1989).

Appl. Phys. Lett. (1)

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. C. Wetsel, Jr., J. Appl. Phys. 51, 3586 (1980).
[CrossRef]

J. Comput. Phys. (1)

J.-D. Yu, S. Sakai, J. A. Sethian, C. D. Meinhart, and H. Zhang, J. Comput. Phys. 220, 568 (2007).
[CrossRef]

J. Microelectromech. Syst. (1)

C. D. Meinhart and H. Zhang, J. Microelectromech. Syst. 9, 67 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, Phys. Rev. E 73, 066311 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of experiment consisting of a microjet system, LR sensing, and jet-shadow detection.

Fig. 2
Fig. 2

The effect of meniscus curvature and beam width on the LR sensor signal. The angular deflection of the extreme rays of reflected beam, R1 and R2, result in the loss of collimation on the sensor plate.

Fig. 3
Fig. 3

Geometrical relationship between the reflected probe light at the sensor face (S) and the position of the meniscus (M). The inset is a plot of ( S 0 S ) versus M.

Fig. 4
Fig. 4

Transient recordings of liquid surface motion. The LR signal is calibrated in micrometers (y axis). The overlaid jet-shadow signal and excitation waveform are plotted in arbitrary units.

Fig. 5
Fig. 5

Transient recordings of meniscus motion where the device surface is wetted.

Fig. 6
Fig. 6

Dynamic longitudinal displacement of piezoelectric element in microjet device. The inset is the static longitudinal displacement of piezoelectric actuator, revealing hysteresis.

Metrics