Abstract

A method of reconstructing positive and negative images simultaneously from the same dc-removed coaxial Fourier hologram with the same reference pattern is presented. The simultaneous reconstruction is possible by making the polarization of the additional dc component of the signal beam perpendicular to the polarization of the reconstructed signal beam, in which separately detected s- and p-polarization components create contrast-reversed images. This method provides an aspect of designing dc-removed coaxial holographic storage systems for realizing optical noise reduction and less consumption of dynamic range of the recording medium.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  2. S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160 (2007).
    [CrossRef]
  3. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).
  4. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  5. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

2007

1996

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Burr, G. W.

Hayashi, K.

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

Kawano, K.

S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160 (2007).
[CrossRef]

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Minabe, J.

S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160 (2007).
[CrossRef]

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

Mok, F. H.

Ogasawara, Y.

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

Psaltis, D.

Yasuda, S.

S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160 (2007).
[CrossRef]

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Opt. Lett.

Other

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” (submitted to Appl. Opt.).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical dc-removed coaxial holographic data storage system for reconstructing contrast-reversed images simultaneously: SLM, spatial light modulator; L1–L4, lenses; HW, half-wave plate; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

(a) Example of a recording pattern: the inner part is for signal pattern, and the outer part is for reference pattern. (b) Readout pattern: the inner part is for adding the dc component of the signal beam, and the outer part is the same reference pattern as in Fig. 2a.

Fig. 3
Fig. 3

Relationship between polarization directions and coordinates.

Fig. 4
Fig. 4

Polarization distributions along the optical path on the reading process.

Fig. 5
Fig. 5

Schematic of the phase and polarization states of the additional dc component (LP1) and the reconstructed signal beam (LP2). s- and p-polarization components of LP1 are in phase and π out of phase with respect to those of LP2, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ E x 3 E y 3 ] = 1 2 | a dc | [ 1 1 ] + 1 2 t s h ( x 3 , y 3 ) [ 1 1 ] .
I p ( x 5 , y 5 ) = 1 2 | | a dc | + t s h ( x 5 , y 5 ) | 2 .
I n ( x 6 , y 6 ) = 1 2 | | a dc | t s h ( x 6 , y 6 ) | 2 .

Metrics