Abstract

We experimentally investigate the nonlinear propagation of subnanosecond pulses in solid-core photonic bandgap fibers. By launching pulses with a few kilowatts peak power, a flat supercontinuum is generated. The long-wavelength edge of the supercontinuum can be controlled thanks to the original linear properties inherent to solid-core photonic bandgap fibers. This allows one to tailor the generated supercontinuum radiation and to keep it over a given spectral range of interest without any significant power loss.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription