Abstract

A microsystem excitation light source emitting at 488nm is presented. A direct single-pass nonlinear frequency conversion using a diode laser emission at 976nm and a periodically poled lithium niobate waveguide crystal for efficient second-harmonic generation is demonstrated. This was realized on a micro-optical bench with a combined thermal management and a footprint of (25mm×5mm). At 217mW fundamental power a generated power of 56mW at 488nm with a conversion efficiency of 26% was achieved. With a power stability below 1%, this wavelength stabilized compact device is well suited for Raman spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), Vol. 157, Chap. 7, p. 128.
  2. K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
    [Crossref]
  3. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, Opt. Lett. 31, 802 (2006).
    [Crossref] [PubMed]
  4. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, Opt. Lett. 32, 3035 (2007).
    [Crossref] [PubMed]
  5. H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
    [Crossref]
  6. H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
    [Crossref]

2008 (2)

K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
[Crossref]

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

2007 (1)

2006 (2)

Coleman, S.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Dzionk, C.

Erbert, G.

Fricke, J.

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
[Crossref]

Güther, R.

Hu, M.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Jechow, A.

Klehr, A.

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
[Crossref]

Knauer, A.

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
[Crossref]

Kubota, M.

K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
[Crossref]

Li, Y.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Maiwald, M.

McCreery, R. L.

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), Vol. 157, Chap. 7, p. 128.

Menzel, R.

Nguyen, H. K.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Okamoto, K.

K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
[Crossref]

Paschke, K.

Sacher, J.

Schedel, M.

Schwertfeger, S.

Song, K.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Stry, S.

Sumpf, B.

Tanaka, T.

K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
[Crossref]

Tränkle, G.

Viskovsky, N. J.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Wenzel, H.

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
[Crossref]

Zah, C.

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Appl. Phys. Express (1)

K. Okamoto, T. Tanaka, and M. Kubota, Appl. Phys. Express 1, 072201 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, IEEE Photon. Technol. Lett. 18, 737 (2006).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

H. K. Nguyen, M. Hu, Y. Li, K. Song, N. J. Viskovsky, S. Coleman, and C. Zah, Proc. SPIE 6890, 68900I (2008).
[Crossref]

Other (1)

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), Vol. 157, Chap. 7, p. 128.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the SHG-microbench laser system. (1) DFB-RW laser, (2) CuW-heatspreader, (3) AlN-microbench ( 25 mm × 5 mm ) , (4) PPLN waveguide crystal, (5) micro-optics, (6) silicon frame, (7) glass top cover, (8) micro-optics, (9) SHG beam.

Fig. 2
Fig. 2

Power-current characteristic and optical spectra of the DFB-RW laser at 976 nm and T = 25 ° C .

Fig. 3
Fig. 3

SHG power of the microbench laser system at λ SHG = 487.4 nm and T = 25 ° C .

Fig. 4
Fig. 4

SHG intensity versus fundamental wavelength λ IR at temperatures of T = 20 ° C , T = 25 ° C , and T = 30 ° C .

Fig. 5
Fig. 5

Stability tests of the microbench laser system at λ SHG = 487.4 nm and T = 25 ° C .

Fig. 6
Fig. 6

Caustic measurements of the microbench laser system at P SHG = 50 mW and T = 25 ° C .

Metrics