Abstract

A cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5dB and a net gain over 45nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
    [CrossRef]
  2. M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
    [CrossRef]
  3. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  4. S. Oda, H. Sunnerud, and P. A. Andrekson, Opt. Lett. 32, 1776 (2007).
    [CrossRef] [PubMed]
  5. J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
    [CrossRef]
  6. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
    [CrossRef] [PubMed]
  7. T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
    [CrossRef]
  8. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
    [CrossRef]
  9. R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.
  10. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Lett. 29, 983 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
[CrossRef]

2005 (2)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

2001 (1)

J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

1996 (1)

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

Alic, N.

R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.

Andrekson, P. A.

S. Oda, H. Sunnerud, and P. A. Andrekson, Opt. Lett. 32, 1776 (2007).
[CrossRef] [PubMed]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

Chiang, T. K.

de Matos, C. J. S.

Guo, Y. D.

M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
[CrossRef]

Hansen, K. P.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Jiang, R.

R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.

Kagi, N.

Kalogerakis, G.

Kazovsky, L. G.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

Marhic, M. E.

McKinstrie, C.

R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.

Oda, S.

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
[CrossRef]

Radic, S.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.

Shimizu, K.

Shum, P.

M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
[CrossRef]

Sunnerud, H.

Tang, M.

M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
[CrossRef]

Taylor, J. R.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
[CrossRef]

Uesaka, K.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Wong, K. K. Y.

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Tang, Y. D. Guo, and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).
[CrossRef]

J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, IEEE Photon. Technol. Lett. 18, 1194 (2006).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photon. Technol. Lett. 17, 2053 (2005).
[CrossRef]

Opt. Lett. (4)

Other (1)

R. Jiang, N. Alic, C. McKinstrie, and S. Radic, in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2007), paper OWB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the proposed FOPA and oscillator.

Fig. 2
Fig. 2

Output optical spectra of the FOPA with and without the intracavity pump of 530 mW .

Fig. 3
Fig. 3

Measured and calculated parametric gain versus signal wavelength with an input signal power of 23 dBm . Squares, experiments; solid curve, theory.

Fig. 4
Fig. 4

Small-signal gain versus the intracavity pump power into HNL-DSF for λ s = 1544 nm and P sin = 23 dBm . Squares, experimental results; solid line, fitted curve.

Fig. 5
Fig. 5

Measured eye diagrams of (a) input signal and (b) amplified signal with λ s = 1544 nm , P sin = 23 dBm , and a pump power of 530 mW .

Fig. 6
Fig. 6

Tunable output spectra of the proposed FOPO with a pump power of 530 mW .

Metrics